Skip to main content

Advertisement

Log in

Optimization of Electric-Pulse Consolidation Regimes to Obtain High-Density Dispersion-Hardened Reactor Steel

  • Published:
Atomic Energy Aims and scope

Research on the development of EP-450 high-density, Y2O3-oxide dispersion-hardened, reactor ferritemartensite steel is described. All available parameters influencing the final density of the compacts were varied in the course of the preparation of the powders and electric-pulse consolidation. The research established that samples with density equal to 99% of the theoretical value can be obtained for the following optimized mechanical activation and electric-pulse consolidation parameters: mechanical alloying time 30 h, optimal Y2O3 amount 0.2–0.5 wt.%, sintering temperature 825–890°C, climb rate to the prescribed temperature >300°C/min, load 70–80 MPa, holding time at the load – without isothermal holding or holding for ≥3 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 B. A. Kalin (ed.), P. A. Platonov, Yu. V. Tuzov, et al., Physical Metallurgy, Vol. 6, Structural Materials of Nuclear Engineering, NIYaU MIFI, Moscow (2012).

  2. 2 S. Ukai and M. Fujiwara, “Perspective of ODS alloys application in nuclear environments,” J. Nucl. Mater., 307–311, 749–757 (2002).

    Article  Google Scholar 

  3. Z. Oksiuta, P. Olier, Y. De Carlan, and N. Baluc, “Development and characterization of a new ODS ferritic steel for fusion reactor application,” J. Nucl. Mater., 393, 114–119 (2009).

    Article  ADS  Google Scholar 

  4. V. S. Ageev, A. A. Nikitina, M. M. Potapenko, et al., “Evaluation of the deformability of EP-450 ODS steel and manufacture of ultrathin-wall tubes from it,” Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., No. 2(71), 14–20 (2008).

  5. M. V. Leont’eva-Smirnova, V. S. Ageev, Yu. P. Budanov, et al., “Structural materials for the cores of Russian fast reactors: Status and prospects,” 21st Int. Conf. Physics of Radiation Phenomena and Radiation Materials Science, Sept. 6–11, 2010, Alushta (2010), pp. 257–258.

  6. V. S. Ageev, A. A. Nikitina, V. V. Sagaradze, et al., “Application of the methods of the metallurgy of sprayed and fastquenched powders for the fabrication of fuel-element cladding from oxide-dispersion-hardened (ODS) high-temperature ferrite-martensite steels,” Vopr. At. Nauki Tekhn. Ser. Fiz. Rad. Povr. Rad. Materialoved., No. 2(90), 134–141 (2007).

  7. G. Pintsuk, S. Oksiuta, J. Linke, et al., “High heat fl ux testing of 12–14Cr ODS ferritic steels,” J. Nucl. Mater., 396, 20–25 (2010).

    Article  ADS  Google Scholar 

  8. M. Yar, A. Wahlberg, H. Bergqvist, et al., “Chemically produced nanostructured ODS-lanthanum oxide–tungsten composites sintered by spark plasma,” J. Nucl. Mater., 408, 129–135 (2011).

    Article  ADS  Google Scholar 

  9. X. Boulnat, D. Fabregue, M. Perez, et al., “High-temperature tensile properties of nano-oxide dispersion strengthened ferritic steels produced by mechanical alloying and spark plasma sintering,” Metallurg. Mater. Trans. A, 44, 2461–2465 (2013).

    Article  ADS  Google Scholar 

  10. I. I. Chernov, M. S. Stal’tsov, B. A. Kalin, et al., “Effect of the initial powder and processing on the structure of oxide-dispersion strengthened steel,” At. Énerg., 116, No. 1, 31–35 (2014).

    Article  Google Scholar 

  11. I. I. Chernov, M. S. Stal’tsov, I. A. Bogachev, et al., “Optimization of mechanical alloying regimes for obtaining reactor ODS steel by plasma spark sintering,” Fiz. Khim. Obrab. Mater., No. 3, 72–79 (2015).

  12. M. Yamamoto, S. Ukai, S. Hayashi, et al., “Reverse phase transformation from α to γ in 9Cr–ODS ferritic steels,” J. Nucl. Mater., 417, 237–240 (2011).

    Article  ADS  Google Scholar 

  13. R. Chaouadi, G. Coen, E. Lucon, et al., “Crack resistance behaviour of ODS and standard 9%Cr-containing steels at high temperature,” J. Nucl. Mater., 403, 15–18 (2010).

    Article  ADS  Google Scholar 

  14. Z. Oksiuta, P. Mueller, P. Spаtig, and N. Baluc, “Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel,” J. Nucl. Mater., 412, 221–226 (2011).

    Article  ADS  Google Scholar 

  15. I. Zheng, L. Chenyang, Z. Shouhui, et al., “Preparation and characterization of nano-structured 14Cr–ODS ferritic steel,” Acta Metallurg. Sinica, 48, No. 6, 649–653 (2012).

    Article  Google Scholar 

  16. A. V. Fedorov and A. V. Shul’gin, “Mathematical modeling of the melting of nanosize particles of metal,” Fiz. Goren. Vzryva, No. 2, 23–29 (2011).

  17. Cs. Balazsi, F. Gillemot, M. Horvath, et al., “Preparation and structural investigation of nanostructured oxide dispersed strengthened steels,” J. Mater. Sci., 46, 4598–4605 (2011).

    Article  ADS  Google Scholar 

  18. D. Fabregue, B. Mouawad, C. Buttay, et al., “Elaboration of architectured materials by spark plasma sintering,” Mater. Sci. Forum, 706–709, 1885–1892 (2012).

    Article  Google Scholar 

  19. S. K. Karak, J. Dutta Majumdar, W. Lojkowski, et al., “Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic steel synthesized by mechanical alloying and consolidated by pulse plasma sintering,” Phil. Mag., 92, No. 5, 516–534 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 120, No. 1, pp. 29–34, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, I.A., Chernov, I.I., Stal’tsov, M.S. et al. Optimization of Electric-Pulse Consolidation Regimes to Obtain High-Density Dispersion-Hardened Reactor Steel. At Energy 120, 37–43 (2016). https://doi.org/10.1007/s10512-016-0092-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-016-0092-0

Keywords

Navigation