Skip to main content
Log in

Effect of Atomic Collision Cascade Formation on Precipitate Growth Kinetics in the Structural Materials of Reactors Under Neutron Irradiation

  • Published:
Atomic Energy Aims and scope

The concentration and average size of phase precipitates enriched with impurity atoms in materials under irradiation, specifically, copper, nickel, and manganese, in the vessel steel of a reactor strongly influence the strength characteristics. This work proposes a theoretical model of the effect of atomic-collision cascades in a material irradiated by fast neutrons on the growth kinetics of copper enriched precipitates at the coalescence stage. The changes in the size distribution function, the time dependences of the concentration and average size as a function of the irradiation dose of fast neutrons at the coalescence stage, as well as the asymptotic changes in the critical size of the deposits are found analytically for large precipitates. The theoretical results are compared with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Dub, V. N. Skorobogatykh, and N. P. Anosov, “Effect of the chemical and structural nonuniformity of VVER vessel steel on the critical temperature of brittleness under irradiation,” At. Énerg., 112, No. 1, 31–38 (2012).

    Google Scholar 

  2. A. I. Bondarenko, M. M. Savin, and A. V. Subbotin, “Model of combined strengthening of crystalline materials with coherent and incoherent precipitates in application to irradiated iron-based alloys with bcc structure,” At. Énerg., 98, No. 5, 332–341 (2005).

    Article  Google Scholar 

  3. H. Wollenberger, “Phase transformations under irradiation,” J. Nucl. Mater., No. 216, 63–77 (1994).

  4. E. V. Metelkin, A. I. Ryazanov, and E. V. Semenov, “Development of new theoretical models for investigation of the formation of cascades and subcascades of atomic collisions in irradiated solids,” Zh. Eksp. Teor. Fiz., 134, No. 3(9), 469–480 (2008).

  5. A. I. Ryazanov, T. I. Mogilyuk, and E. V. Semenov, “Use of Boltzmann’s kinetic equation for studying the multiplication of fast electrons in irradiated materials,” Zh. Eksp. Teor. Fiz., 141, No. 4, 675–682 (2012).

    Google Scholar 

  6. A. I. Ryazanov, E. V. Metelkin, and E. V. Semenov, “Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials,” J. Nucl. Mater., 386–388, 132–134 (2009).

    Article  Google Scholar 

  7. A. I. Ryazanov and E. V. Semenov, “Radiation damage formation in fusion structural materials due to elastic and inelastic Processes,” J. Nucl. Mater., 417, 1074–1077 (2011).

    Article  ADS  Google Scholar 

  8. W. Phythian and C. English, “Microstructural evolution in reactor pressure vessel steels,” J. Nucl. Mater., 205, 162–177 (1993).

    Article  ADS  Google Scholar 

  9. W. Miller and M. Burke, “An atom probe field ion microscopy study of neutron-irradiated pressure vessel steels,” J. Nucl. Mater., 195, 68–82 (1992)

    Article  ADS  Google Scholar 

  10. J. Buswell, P. Bischler, S. Fenton, and A. Ward, “Microstructural developments in neutron-irradiated mild steel submerged-arc weld metal,” J. Nucl. Mater., 205, 198–205 (1993).

    Article  ADS  Google Scholar 

  11. K. Russell and L. Brown, “A dispersion strengthening model based on differing elastic moduli applied to the ironcopper system,” Acta Met., 20, 969–974 (1972).

    Article  Google Scholar 

  12. A. Gokhman, J. Boehmert, and A. Ulbricht, “Kinetic study of copper precipitates under VVER-type reactor conditions,” Rad. Eff., No. 158, 783–792 (2003).

  13. I. Monnet, P. Dubuisson, Y. Serruys, et al., “Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels,” J. Nucl. Mater., 335, 311–321 (2004).

    Article  ADS  Google Scholar 

  14. T. Yoshitake, T. Ohmori, and S. Miyakawa, “Burst properties of irradiated oxide dispersion strengthened ferritic steel claddings,” J. Nucl. Mater., 307, 788–792 (2002).

    Article  ADS  Google Scholar 

  15. R. Klueh and D. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, West Conshohocken, PA (2001), p. 39.

  16. J. Lee, C. Jang, I. Kim, and A. Kimura, “Embrittlement and hardening during thermal aging of high Cr oxide dispersion strengthened alloys,” J. Nucl. Mater., 367, 229–233 (2007).

    Article  ADS  Google Scholar 

  17. A. A. Turkin, Yu. A. Turkin, and A. S. Bakai, “Modelling of cascade-induced dissolution of coherent chromium precipitates in copper,” J. Nucl. Mater., 223, 143–150 (1995).

    Article  ADS  Google Scholar 

  18. N. Wanderka, C. Ramachandra, R. Wahi, and H. Wollenberger, “Radiation-altered phase stability of a precipitate hardened copper alloy,” J. Nucl. Mater., 189, 9–13 (1992).

    Article  ADS  Google Scholar 

  19. K. Russell, “Phase instability under cascade damage irradiation,” J. Nucl. Mater., 206, 129–138 (1993).

    Article  ADS  Google Scholar 

  20. Ya. B. Zeldovich, “On the formation of a new phase,” Zh. Eksp. Teor. Fiz., No. 12, 525–538 (1942).

  21. I. M. Lifshits and V. V. Slezov, “On the kinetics of diffusion decomposition of supersaturated solid solutions,” Zh. Eksp. Teor. Fiz., No. 35, 479–492 (1958).

  22. G. Odette, “On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels,” Scripta Met., No. 17, 1183–1188 (1983).

  23. E. A. Kuleshova, B. A. Gurovich, Ya. I. Shtrombakh, et al., “Microstructural behavior of VVER-440 reactor pressure vessel steels under irradiation to neutron fluences beyond the design operation period,” J. Nucl. Mater., 342, 77–89 (2005).

  24. P. Monasterio, B. Wirth, and G. Odette, “Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys,” J. Nucl. Mater., 361, 127–140 (2007).

    Article  ADS  Google Scholar 

  25. A. A. Turkin and A. S. Bakai, “Formation of steady state size distribution of precipitates in alloys under cascade producing irradiation,” J. Nucl. Mater., 358, 10–25 (2006).

    Article  ADS  Google Scholar 

  26. A. A. Turkin and A. S. Bakai, “Recombination mechanism of point defect loss to coherent precipitates in alloys under irradiation,” J. Nucl. Mater., 270, 349–356 (1999).

    Article  ADS  Google Scholar 

  27. N. M. Kiryukhin, V. V. Sagalovich, and V. V. Slezov, “Kinetics of the coalescence of two-component precipitates dissolved in cascades,” Phys. Met. Metallogr., No. 68, 190–193 (1989).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 119, No. 6, pp. 322–328, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, A.I., Petukhov, M.A. Effect of Atomic Collision Cascade Formation on Precipitate Growth Kinetics in the Structural Materials of Reactors Under Neutron Irradiation. At Energy 119, 396–403 (2016). https://doi.org/10.1007/s10512-016-0080-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-016-0080-4

Keywords

Navigation