Skip to main content
Log in

Modeling of Proton Beam Dynamics in an Accelerator-Driver at 600–1000 MeV and Investigation of the Electrodynamic Characteristics of Accelerating Cavities

  • Published:
Atomic Energy Aims and scope

The results of an investigation of the beam dynamics in a high-power proton accelerator-driver intended for operation as part of a subcritical electronuclear facility are presented. The initial normally conducting part of the accelerator at current 10 mA with current-passage ratio >95% has been developed. A channel with current-passage ratio 100% has been developed for the superconducting part of the accelerator. Modeling of the accelerating cavities for all velocity ranges has been done. High electrodynamic performance has been attained as a result of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Aksent’ev, P. N. Alekseev, K. A. Aliev, et al., “Conceptual development of a proton-beam accelerator-driver at energies 600–1000 MeV with average beam power >1 MW,” At. Énerg., 117, No. 4, 270–280 (2014).

    Article  Google Scholar 

  2. I. M. Kapchinskii and V. A. Teplyakov, “Linear ion accelerator with spatially uniform strong focusing,” Prib. Tekhn. Eksper., No. 2, 19–22 (1970).

  3. S. Henderson, “DOE study report,” in: Proc. Int. Workshop on Accelerator-Driven Sub-Critical Systems & Th Utilization (2010), pp. 1–72.

  4. W. Kilpatrick, “Criterion for vacuum sparking designed to include both RF and DC,” Rev. Sci. Instrum., 28, No. 10, p. 824 – 826 (1957).

    Article  ADS  Google Scholar 

  5. W. P. Lysenko, Understanding Scaling Laws, Preprint LA-UR–86-1150 (1986).

  6. G. N. Kropachev, T. V. Kulevoy, S. M. Polozov, et al., “Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex,” Probl. At. Sci. Technol., Ser. Nucl. Phys. Invest., No. 6(88), 8–12 (2013).

  7. E. S. Masunov and S. M. Polozov, “BEAMDULAC code for numerical simulation of 3D beam dynamics in a highintensity undulator linac,” Nucl. Instrum. Meth. A, 558, 184–187 (2006).

    Article  ADS  Google Scholar 

  8. E. S. Masunov and S. M. Polozov, “High intensity ion beams in RF undulator linac,” Phys. Rev. ST AB, 11, 074201, 1–9 (2008).

    Google Scholar 

  9. A. I. Balabin and G. N. Kropachev, “6D-high current beam matching at RFQ entrance,” in: Proc. EPAC’94 (1994), pp. 1180–1182.

  10. A. I. Balabin and G. N. Kropachev, “Beam focusing by decelerating RF fields in a drift tube linac,” Nucl. Instrum. Meth. A, 459, 87–92 (2001).

    Article  ADS  Google Scholar 

  11. A. I. Balabin and G. N. Kropachev, “Application of RF grossed lenses for beam focusing in linac,” in: Proc. LINAC’96 (1996), pp. 417–419.

  12. A. S. Plastun and A. A. Kolomiets, “RFQ with improved energy gain,” in: Proc. LINAC’12 (2012), pp. 41–43.

  13. A. S. Plastun, “RFQ as a second section of front end of ion linac,” Probl. At. Sci. Technol., Ser. Nucl. Phys. Invest., No. 6(88), 109–113 (2013).

  14. P. N. Ostroumov, J. A. Nolen, R. C. Pardo, et al., “Design of a post accelerator for the rare isotope accelerator facility,” in: Proc. PAC’2001 (2001), pp. 4080–4082.

  15. E. S. Masunov and A. V. Samoshin, “Beam focusing in a linear ion accelerator comprised of a periodic sequence of independently phased superconducting resonators,” Zh. Tekh. Fiz., 80, No. 7, 115–121 (2010).

    Google Scholar 

  16. A. V. Samoshin, “Complex approach of beam dynamic investigation in SC linac,” Probl. At. Sci. Technol., Ser. Nucl. Phys. Invest., No., 4(80), 78–82 (2012).

  17. S. M. Polozov and A. V. Samoshin, “Beam dynamics simulation in high power driver linac using BEAMDULAC-SCL Code,” Probl. At. Sci. Technol., Ser. Nucl. Phys. Invest., No. 3(91), 143–146 (2014).

  18. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, J. Wiley & Sons (1998).

  19. V. A. Andreev and G. Parisi, “90-apart-stem RFQ structure for a wide range of frequencies,” in: Proc. PAC’93 (1993), pp. 3124–3126.

  20. V. L. Zvyagintsev, Theoretical and Experimental Investigation of Superconducting Coaxial Quarter-Wave Cavities for Linear Ion Accelerators: Dissert. Cand. Techn. Sci., MIFI, Moscow (2013).

    Google Scholar 

  21. K. W. Shepard, P. N. Ostroumov, and J. R. Delayen, “High-energy ion linacs based on superconducting spoke cavities,” Phys. Rev. Spec. Top. Accel. Beams, 6, 080101, 1–6 (2003).

    Google Scholar 

  22. B. Yu. Bogdanovich, V. E. Kalyuzhnyi, V. I. Kaminskii, and N. P. Sobenin, Accelerating Structures and RF Setups of Linear Colliders, Energoatomizdat, Moscow (2004).

    Google Scholar 

  23. B. Aune, R. Bandelmann, D. Bloess, et al., “Superconducting TESLA cavities,” Phys. Rev. Spec. Top. Accel. Beams, 3, 092001, 1–7 (2000).

    Google Scholar 

  24. A. N. Didenko, V. I. Kaminskii, M. V. Lalayan, and N. P. Sobenin, Superconducting Accelerating Cavities, MIFI, Moscow (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 117, No. 5, pp. 279–287, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksent’ev, A.E., Aliev, K.A., Ashanin, I.A. et al. Modeling of Proton Beam Dynamics in an Accelerator-Driver at 600–1000 MeV and Investigation of the Electrodynamic Characteristics of Accelerating Cavities. At Energy 117, 347–356 (2015). https://doi.org/10.1007/s10512-015-9932-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-015-9932-6

Keywords

Navigation