Skip to main content

Advertisement

Log in

Modified Renyi Holographic Dark Energy (MRHDE) in f(R, T) Theory of Gravity

  • Published:
Astrophysics Aims and scope

In this work, we investigate the dynamics of Bianchi type VI0 space-time in the framework of f(R, T) theory of gravity where R stands for Ricci scalar and T stands for the trace of the stress energy-momentum tensor with Modified Renyi Holographic Dark Energy (MRHDE). With the specific choice of the functional f(R, T) = f1(R) + f2 (T) = μ1 R+ μ2 T where f1(R) and f2 (T) are arbitrary functions of R and T respectively and μ1 and μ2 are two parameters, we have obtained the exact solutions of the model by considering the energy density of MRHDE and by using a law of variation for the Hubble parameter H. It is found that our model leads to the accelerated expansion of the Universe. The EOS parameter ωDE > -1 DE indicates that our cosmological model behaves like a quintessence dark energy model which is consistent with the recent observations. A correspondence between MRHDE and quintessence dark energy is established. The quintessence dynamics of the potential and scalar field are reconstructed, which illustrates the late-time cosmic acceleration. All physical parameters are calculated and discussed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J., 116, 1009, 1998.

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Nature, 391, 51, 1998.

    Article  ADS  Google Scholar 

  3. C. L. Bennett et al., Astrophys. J. Suppl. Ser., 148, 1, 2003.

    Article  ADS  Google Scholar 

  4. D. N. Spergel et al., Astrophys. J. Suppl. Ser., 148, 175, 2003.

    Article  ADS  Google Scholar 

  5. M. Tegmark et al., Phys. Rev. D, 69, 103501, 2004.

    Article  ADS  Google Scholar 

  6. S. Weinberg, Rev. Mod. Phys., 61, 1, 1989.

    Article  ADS  Google Scholar 

  7. J. M. Overduin and F. I. Cooperstock, Phys. Rev. D, 58, 043506, 1998.

    Article  ADS  Google Scholar 

  8. T. Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D, 61, 127301, 2000.

    Article  ADS  Google Scholar 

  9. R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett., 91, 071301, 2003.

    Article  ADS  Google Scholar 

  10. C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. D, 63, 103510, 2001.

    Article  ADS  Google Scholar 

  11. J. S. Bagla, H. K. Jassal, and T. Padmanabhan, Phys. Rev. D, 67, 063504, 2003.

    Article  ADS  Google Scholar 

  12. t’G. Hooft, arXiv: gr-qc/9310026, 1993.

  13. L. Susskind, J. Math. Phys., 36, 6377, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett., 82(25), 4971, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Li, Phys. Lett. B, 603, 1, 2004.

    Article  ADS  Google Scholar 

  16. S. M. Carroll, V. Duvvuri, M. Trodden et al., Phys. Rev. D, 70, 043528, 2004.

    Article  ADS  Google Scholar 

  17. T. Harko, F. S. N. Lobo, S. Nojiri et al., Phys. Rev. D, 84, 024020, 2011.

    Article  ADS  Google Scholar 

  18. B. Mishra and P. K. Sahoo, Astrophys. Space Sci., 352(1), 331, 2014.

    Article  ADS  Google Scholar 

  19. K. S. Adhav, Astrophys. Space Sci., 339, 365, 2012.

    Article  ADS  Google Scholar 

  20. M. Tavayef, A. Sheykhi, K. Bamba et al., Phys. Lett. B, 781, 195, 2018.

    Article  ADS  Google Scholar 

  21. C. Tsallis and L. J. L. Cirto, Eur. Phys. J. C, 73, 2487, 2013.

    Article  ADS  Google Scholar 

  22. A. S. Jahromi et al., Phys. Lett. B, 780, 21, 2018.

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Moradpour, S. A. Moosavi, I. P. Lobo et al., Eur. Phys. J. C, 78(10), 829, 2018.

    Article  ADS  Google Scholar 

  24. H. Moradpour, A. Bonilla, E. M. C. Abreu et al., Phys. Rev. D, 96(12), 123504, 2017.

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Moradpour, Int. J. Theor. Phys., 55(9), 4176, 2016.

    Article  MathSciNet  Google Scholar 

  26. N. Komatsu, Eur. Phys. J. C, 77(4), 229, 2017.

    Article  ADS  Google Scholar 

  27. S. Ghaffari, A. H. Ziaie, V. B. Bezerra et al., Mod. Phys. Lett. A, 35(1), 1950341, 2020.

    Article  ADS  Google Scholar 

  28. V. C. Dubey, U. K. Sharma, and A. A. Mamon, Adv. High Energy Phys., 2021, doi: https://doi.org/10.1155/2021/6658862.

  29. A. Saha, S. Ghose, A. Chanda et al., arXiv: 2101. 04060v1 [gr-qc], 2021.

  30. U. Y. Divya Prasanthi and Y. Aditya, Results Phys., 17, 103101, 2020.

    Article  Google Scholar 

  31. V. C. Dubey, A. K. Mishra, and U. K. Sharma, Astrophys. Space Sci., 365, 129, 2020.

    Article  ADS  Google Scholar 

  32. S. Chen and J. Jing, Phys. Lett. B, 679, 144, 2009.

    Article  ADS  Google Scholar 

  33. C. L. Bennett et al., Astrophys. J. Suppl. Ser, 148, 1, 2003.

    Article  ADS  Google Scholar 

  34. Ö. Akarsu and C. B. Kilinc, Astrophys. Space Sci., 326, 315, 2010.

    Article  ADS  Google Scholar 

  35. R. Chaubey and A. K. Shukla, Astrophys. Space Sci., 343, 415, 2013.

    Article  ADS  Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, The Classical theory of Fields (Butterworth Heinemann, Oxford), 1998.

    MATH  Google Scholar 

  37. M. S. Berman, Nuovo Cimento B, 74, 182, 1983.

    Article  ADS  Google Scholar 

  38. K. S. Adhav, Int. J. Astron. Astrophys., 1, 204, 2011.

    Article  Google Scholar 

  39. V. Sahni, T. D. Saini, A. A. Starobinsky et al., JETP Lett., 77, 201, 2003.

    Article  ADS  Google Scholar 

  40. Y. S. Myung, Phys. Lett. B, 652, 223, 2007.

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Sangwan, A. Mukherjee, and H. K. Jassal, JCAP, 01, 018, 2018.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bharali.

Additional information

Published in Astrofizika, Vol. 64, No. 4, pp. 559-573 (November 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharali, J., Das, K. Modified Renyi Holographic Dark Energy (MRHDE) in f(R, T) Theory of Gravity. Astrophysics 64, 512–528 (2021). https://doi.org/10.1007/s10511-021-09712-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-021-09712-0

Keywords

Navigation