Skip to main content
Log in

Modelling the Transition Layer of an Accretion Disk with a Burgers Vortex

  • Published:
Astrophysics Aims and scope

The possibility of representing the transition (boundary) layer of an accretion disk around young stellar objects as a Burgers vortex is examined. The basic physical and geometrical characteristics of the transition layer are obtained. It is shown that, depending on the parameters of the system, the transition layer as a Burgers vortex can produce a bipolar outflow (active phase) or ensure the capture of accreting matter by the central body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. André and T. Montmerle, Astrophys. J. 420, 837 (1994).

    Article  ADS  Google Scholar 

  2. H. E. Karl, Astrophys. J. 553, L153 (2001).

    Article  Google Scholar 

  3. D. L. Padgett, et al., Astron. J. 117(3), 1490 (1999).

    Article  ADS  Google Scholar 

  4. V. A. Ambartsumyan, Ann. Rev. Astron. Astrophys. 18, 1-13 (1980).

    Article  ADS  Google Scholar 

  5. R. N. Sean, Icarus, 183(2), 265 (2006).

    Article  Google Scholar 

  6. D. Lynden-Bell, Mon. Not. Roy. Astron. Soc. 168(3), 603 (1974).

    Article  ADS  Google Scholar 

  7. B. Reipurth and J. Bally, Ann. Rev. Astron. Astrophys. 39, 403 (2001).

    Article  ADS  Google Scholar 

  8. I. F. Mirabel and L. F. Rodriguez, ARA&A, 37, 409 (1999).

    Article  ADS  Google Scholar 

  9. P. Mészáros, ARA&A, 40, 137 (2002).

    Article  Google Scholar 

  10. A. P. Marscher, S. G. Jorstad, J. Gomez, et al., Nature, 417, 625 (2002).

    Article  ADS  Google Scholar 

  11. R. D. Blandford, in: T. L. Courvoisier and M. Mayor, eds., Active Galactic Nuclei, Saas-Fee Advanced Course 20 (Les Diablerets: Springer-Verlag), pp. 161-275 (1990).

  12. P. A. G. Scheuer, Mon. Not. Roy. Astron. Soc. 166, 513 (1974).

    Article  ADS  Google Scholar 

  13. R. D. Blandford and D. G. Payne, Mon. Not. Roy. Astron. Soc. 199, 883 (1982).

    Article  ADS  Google Scholar 

  14. R. N. Henriksen and D. Valls-Gabaud, Mon. Not. Roy. Astron. Soc. 266, 681 (1994).

    Article  ADS  Google Scholar 

  15. D. L. Meier, S. Koide, and Y. Uchida, Science, 291, 84 (2001).

    Article  ADS  Google Scholar 

  16. D. J. Price, J. E. Pringle, and A. R. King, Mon. Not. Roy. Astron. Soc. 339, 1223 (2003).

    Article  ADS  Google Scholar 

  17. N. Soker and O. Regev, arXiv:astro-ph/0305422v1 22 May 2003; Proceedings of the International Astronomical Union (2007).

  18. L. I. Matveenko, Multifacted unity, IKI RAN, Pr-2179, Moscow (2016), 60 p.

  19. M. G. Abrahamyan, Astrophysics 51, 163 (2008).

    Article  ADS  Google Scholar 

  20. M. G. Abrahamyan, Astrophysics 52, 119 (2009).

    Article  ADS  Google Scholar 

  21. M. G. Abrahamyan and L. I. Matveenko, Astrophysics, 55, 397 (2012).

    Article  ADS  Google Scholar 

  22. X. Hernandez, P. L. Rendón, R. G. Rodriguez-Mota, and A. Capella, arXiv:1103.0250v1[astro-ph.HE], Mar. 1, 2011.

  23. T. Ray, T. W. B. Muxlow, D. J. Axon, et al., Nature 385, 415 (1997).

    Article  ADS  Google Scholar 

  24. K. V. Getman, E. D. Feigelson, L. Townsley, et al., Astrophys. J. 575, 354 (2002).

    Article  ADS  Google Scholar 

  25. B. Lautrup, Physics of Continuous Matter (2nd ed.), CRC Press (2011).

  26. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  27. S. N. Shore, Astrophysical Hydrodynamics, 2nd revised edition, Wiley (2007), 468 pp.

  28. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  29. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  30. M. Rozyczka and H. C. Spruit, Astrophys. J. 417, 677 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Abrahamyan.

Additional information

Translated from Astrofizika, Vol. 60, No. 2, pp. 249-262 (May 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahamyan, M.G. Modelling the Transition Layer of an Accretion Disk with a Burgers Vortex. Astrophysics 60, 228–241 (2017). https://doi.org/10.1007/s10511-017-9478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-017-9478-5

Keywords

Navigation