Skip to main content
Log in

Non-integrability, stability and periodic solutions for a quartic galactic potential in a rotating reference frame

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This work aims to study the influence of the rotation of the galaxy which it is modelled as a bi-symmetrical potential consists of a two-dimensional harmonic oscillator with quartic perturbing terms on some dynamics aspects for the problem of the motion of stars. We prove analytically the non-integrability of the motion (i.e., the motion is chaotic) when the parameters meet certain conditions. Poincaré surface of section is introduced as a numerical method that is employed to confirm the obtained analytical results. We present the equilibrium points and examine their stability. We also clarify the force resulting from the rotating frame serves as a stabilizer for the maximum equilibrium points. We illustrate graphically the size of stability zones depends on the value of the angular velocity for the frame. Based on the Lyapunov theorem, the periodic solutions are constructed near the equilibrium point. Additionally, we prove the existence of one or two families of periodic solutions according to the equilibrium point is either saddle or stable, respectively. The permitted zones of possible motion are delimited and they are graphically explained for different values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.E.: Foundation of Mechanics. Benjamin, Reading (1978)

    Google Scholar 

  • Alfaro, F., Llibre, J., Pérez-Chavela, E., Alfaro, F.: Periodic orbits for a class of galactic potentials. Astrophys. Space Sci. 344, 39–44 (2013)

    MATH  ADS  Google Scholar 

  • Caranicolas, N.D.: A mapping for the study of the 1:1 resonance in a galactic type Hamiltonian. Celest. Mech. Dyn. Astron. 47, 87–96 (1989)

    MathSciNet  MATH  ADS  Google Scholar 

  • Caranicolas, N.D.: Exact periodic orbits and chaos in polynomial potentials. Astrophys. Space Sci. 167, 305–313 (1990a)

    MathSciNet  Google Scholar 

  • Caranicolas, N.D.: Global stochastically in a time-dependent galactic model. Astron. Astrophys. 227, 54–60 (1990b)

    ADS  Google Scholar 

  • Caranicolas, N.D.: The structure of motion in a 4-component galaxy mass model. Astrophys. Space Sci. 246, 15–28 (1996)

    MATH  ADS  Google Scholar 

  • Caranicolas, N.D.: Maps describing motion in strong bars. New Astron. 7, 397–402 (2000)

    ADS  Google Scholar 

  • Caranicolas, N.D., Innanen, K.A.: Chaos in a galaxy model with nucleus and bulge components. Astron. J. 102, 1343–1347 (1991)

    ADS  Google Scholar 

  • Caranicolas, N.D., Vozikis, C.L.: Order and chaos in galactic maps. Astron. Astrophys. 349, 70 (1999)

    ADS  Google Scholar 

  • Chetaev, N.G.: The Stability of Motion. Pergamon, New York (1961)

    Google Scholar 

  • Contopoulos, G.: Asymptotic curves and escapes in Hamiltonian systems. Astron. Astrophys. 231, 41–45 (1990)

    MathSciNet  ADS  Google Scholar 

  • Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)

    MATH  Google Scholar 

  • de Bustos, M.T., Guirao, J.L., Llibre, J., Vera, J.A.: New families of periodic orbits for a galactic potential. Chaos Solitons Fractals 82, 97–102 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • El-Dessoky, M.M., Elmandouh, A.A., Hobiny, A.: Periodic orbits of the generalized Friedmann-Robertson-Walker potential in galactic dynamics in a rotating reference frame. AIP Adv. 7, 035021 (2017)

    ADS  Google Scholar 

  • El-Sabaa, F.M.: About the periodic solutions of a rigid body in a central Newtonian field. Celest. Mech. Dyn. Astron. 55, 323–330 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  • El-Sabaa, F.M., Hosny, M., Zakria, S.K.: Bifurcations of Armbruster Guckenheimer Kim galactic potential. Astrophys. Space Sci. 364, 34–43 (2019)

    MathSciNet  ADS  Google Scholar 

  • Elmandouh, A.A.: On the integrability of the motion of 3D-Swinging Atwood machine and related problems. Phys. Lett. A 380, 989–991 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • Elmandouh, A.A.: On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame. Astrophys. Space Sci. 361, 182–194 (2016)

    MathSciNet  ADS  Google Scholar 

  • Elmandouh, A.A.: New integrable problems in a rigid body dynamics with cubic integral in velocities. Results Phys. 8, 559–968 (2018)

    ADS  Google Scholar 

  • Elmandouh, A.A.: On the integrability of 2D Hamiltonian systems with variable Gaussian curvature. Nonlinear Dyn. 93, 933–943 (2018)

    MATH  Google Scholar 

  • Elmandouh, A.A.: First integrals of motion for two dimensional weight-homogeneous Hamiltonian systems in curved spaces. Commun. Nonlinear Sci. Numer. Simul. 75, 220–235 (2019)

    MathSciNet  ADS  Google Scholar 

  • Elmandouh, A.A.: On the integrability of new examples of two-dimensional Hamiltonian systems in curved spaces. Commun. Nonlinear Sci. Numer. Simul. 90, 105368 (2020)

    MathSciNet  Google Scholar 

  • Guirao, J.L., Llibre, J., Vera, J.A.: Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry. Nonlinear Dyn. 83, 839–848 (2016)

    MathSciNet  MATH  Google Scholar 

  • Innanen, K.A.: The threshold of chaos for Henon-Heiles and related potentials. Astron. J. 90, 2377–2380 (1985)

    ADS  Google Scholar 

  • Llibre, J., Claudia, V.: Global dynamics of the integrable Armbruster-Guckenheimer-Kim galactic potential. Astrophys. Space Sci. 364, 130–136 (2019)

    MathSciNet  ADS  Google Scholar 

  • Llibre, J., Makhlouf, A.: Periodic orbits of the generalized Friedmann-Robertson-Walker Hamiltonian systems. Astrophys. Space Sci. 344, 45–50 (2013)

    MATH  ADS  Google Scholar 

  • Llibre, J., Roberto, L.: Periodic orbits and non-integrability of Armbruster-Guckenheimer-Kim potential. Astrophys. Space Sci. 343, 69–74 (2013)

    MATH  ADS  Google Scholar 

  • Llibre, J., Vidal, C.: Periodic orbits and non-integrability in a cosmological scalar field. J. Math. Phys. 53, 012702 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  • Llibre, J., Vidal, C.: New 1:1:1 periodic solution in 3-dimensional galactic-type Hamiltonian systems. Nonlinear Dyn. 78, 968–980 (2014)

    MathSciNet  MATH  Google Scholar 

  • Llibre, J., PaÅŸca, D., Valls, C.: Periodic solutions of a galactic potential. Chaos Solitons Fractals 61, 38â–43 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  • Lyapunov, A.M.: General Problem of Stability of Motion. Collected Works, vol. 2. Izd. Akad. Nauk SSSR, Moscow (1956)

    Google Scholar 

  • Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton Univ. Press, New Jersey (1970)

    Google Scholar 

  • Mnasri, C., Elmandouh, A.A.: On the dynamics aspects for the plane motion of a particle under the action of potential forces in the presence of a magnetic field. Results Phys. 9, 825–831 (2018)

    ADS  Google Scholar 

  • Morales-Ruiz, J.J., Ramis, J.P.: Galoisian obstructions to integrability of Hamiltonian systems: statements and examples. NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci. 533, 509–513 (1999)

    MathSciNet  MATH  Google Scholar 

  • Navarro, J.F.: Windows for escaping particles in quartic galactic potentials. Appl. Math. Comput. 303, 190–202 (2017)

    MathSciNet  MATH  Google Scholar 

  • Ruiz, J.J.M.: Differential Galois Theory and Non-integrability of Hamiltonian Systems. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  • SzumiÅ„ski, W.: On certain integrable and superintegrable weight-homogeneous Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 67, 600–616 (2019)

    MathSciNet  ADS  Google Scholar 

  • Yehia, H.M.: On periodic, almost stationary motions of a rigid body about a fixed point. J. Appl. Math. Mech. 41, 556–558 (1977)

    Google Scholar 

  • Yehia, H.M., Elmandouh, A.A.: A new conditional integrable case in the dynamics of a rigid body-gyrostat. Mech. Res. Commun. 78, 7–25 (2016)

    Google Scholar 

  • Yoshida, H.: Necessary condition for the existence of algebraic first integrals. I: Kowalevski’s exponents. Celest. Mech. 31, 363–379 (1983a)

    MathSciNet  MATH  ADS  Google Scholar 

  • Yoshida, H.: Necessary condition for the existence of algebraic first integrals. II: condition for algebraic integrability. Celest. Mech. 31, 381–399 (1983b)

    MathSciNet  MATH  ADS  Google Scholar 

  • Yoshida, H.: A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential. Physica D 29, 128–142 (1987)

    MathSciNet  MATH  ADS  Google Scholar 

  • Yoshida, H.: A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degrees of freedom. Phys. Lett. A 141, 108–112 (1989)

    MathSciNet  ADS  Google Scholar 

  • Zeeuw, T., Merritt, D.: Stellar orbits in a triaxial galaxy, I: orbits in the plane of rotation. Astrophys. J. 267, 571–595 (1983)

    MathSciNet  ADS  Google Scholar 

  • Ziglin, S.L.V.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I. Funct. Anal. Appl. 16, 181–189 (1982)

    MATH  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the Deanship of Scientific Research at King Faisal University for their financial support under Research Group Support Track (Grant No.1811003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Elmandouh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Kowalevski exponents

Appendix A: Kowalevski exponents

An autonomous dynamical system which takes the form

$$ \frac{dz_{j}}{dt}=\mathcal{K}_{j}(z_{1}, z_{2}, \dots , z_{m}), j=1, 2, \dots , m, $$
(51)

is similarity-invariant system if it is invariant under the transformation

$$ t\rightarrow \alpha ^{-1}t,\quad z_{j}\rightarrow \alpha ^{g_{j}}z_{j}, j=1, 2, \dots , m, $$
(52)

where \(\alpha \) and \(g_{i}\) are arbitrary constants. The similarity invariant system (51) is generally has the particular solution

$$ z_{j}=c_{j}t^{-g_{j}}, j=1, 2, \dots , m, $$
(53)

where \(c_{i}\) are non-zero solutions of the equations

$$ \mathcal{K}_{j}(c_{1}, c_{2}, \dots , c_{m})+g_{j}c_{j}=0, j=1, 2, \dots , m. $$
(54)

The Kowalevski matrix \(K=[k_{ij}]\) is determined by

$$ K_{ji}=\frac{\partial \mathcal{K}_{j}}{\partial z_{j}}+\delta _{ji}g_{j}, j,i=1, 2, \dots , m. $$
(55)

The Kowalevski exponents are the eigenvalues of the Kowalevski matrix and we refer to them by a symbol \(\rho \) (for more details, see, e.g. Yoshida 1983a; Yoshida 1983b).

Theorem 5

Let us assume there is at least one Kowalevski exponents for the similarity invariant system is irrational or complex number, then the similarity invariant system is not algebraically integrable.

For a non-similarity dynamical system, we search for an invariant transformation converting it to a similarity invariant system when the constant \(\alpha \) tends to zero or infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmandouh, A.A., Ibrahim, A.G. Non-integrability, stability and periodic solutions for a quartic galactic potential in a rotating reference frame. Astrophys Space Sci 365, 115 (2020). https://doi.org/10.1007/s10509-020-03837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03837-y

Keywords

Navigation