Skip to main content
Log in

New prospects of cancer therapy based on pyroptosis and pyroptosis inducers

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 Countries[J]. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation[J]. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  3. Philip M, Schietinger A (2022) CD8(+) T cell differentiation and dysfunction in cancer[J]. Nat Rev Immunol 22(4):209–223

    Article  CAS  PubMed  Google Scholar 

  4. Warburg O (1956) On the origin of cancer cells[J]. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  5. Koren E, Fuchs Y (2021) Modes of regulated cell death in Cancer[J]. Cancer Discov 11(2):245–265

    Article  CAS  PubMed  Google Scholar 

  6. Yu P, Zhang X, Liu N et al (2021) Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther 6(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Chen X, Gueydan C et al (2018) Plasma membrane changes during programmed cell deaths[J]. Cell Res 28(1):9–21

    Article  CAS  PubMed  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medina CB, Mehrotra P, Arandjelovic S et al (2020) Metabolites released from apoptotic cells act as tissue messengers[J]. Nature 580(7801):130–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Gao W, Shao F, Pyroptosis (2017) Gasdermin-mediated programmed necrotic cell Death[J]. Trends Biochem Sci 42(4):245–254

    Article  CAS  PubMed  Google Scholar 

  11. Karmakar M, Minns M, Greenberg EN et al (2020) N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis[J]. Nat Commun 11(1):2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kijima M, Mizuta R (2019) Histone H1 quantity determines the efficiencies of apoptotic DNA fragmentation and chromatin condensation[J]. Biomed Res 40(1):51–56

    Article  CAS  PubMed  Google Scholar 

  13. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages[J]. Nature 358(6382):167–169

    Article  CAS  PubMed  Google Scholar 

  14. Hou J, Hsu JM, Hung MC (2021) Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity[J]. Mol Cell 81(22):4579–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Mei S, Luo Y et al (2018) Gasdermin Family: a promising therapeutic target for Stroke[J]. Transl Stroke Res 9(6):555–563

    Article  CAS  PubMed  Google Scholar 

  16. Broz P, Pelegrín P, Shao F (2020) The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol 20(3):143–157

    Article  CAS  PubMed  Google Scholar 

  17. Julien O, Wells JA (2017) Caspases and their substrates[J]. Cell Death Differ 24(8):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Wang C, Yang J et al (2019) Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and Oligomerization[J]. Immunity 51(1):43–49e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogers C, Fernandes-Alnemri T, Mayes L et al (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death[J]. Nat Commun 8:14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma M, De Alba E, Structure (2021) Activation and regulation of NLRP3 and AIM2 Inflammasomes[J]. Int J Mol Sci, 22(2)

  21. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes[J]. Cell 157(5):1013–1022

    Article  CAS  PubMed  Google Scholar 

  22. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol 16(7):407–420

    Article  CAS  PubMed  Google Scholar 

  23. Rathinam VA, Jiang Z, Waggoner SN et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses[J]. Nat Immunol 11(5):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heilig R, Broz P (2018) Function and mechanism of the pyrin inflammasome[J]. Eur J Immunol 48(2):230–238

    Article  CAS  PubMed  Google Scholar 

  25. Aachoui Y, Sagulenko V, Miao EA et al (2013) Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection[J]. Curr Opin Microbiol 16(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  27. Wang K, Sun Q, Zhong X et al (2020) Structural mechanism for GSDMD Targeting by Autoprocessed caspases in Pyroptosis[J]. Cell 180(5):941–955e20

    Article  CAS  PubMed  Google Scholar 

  28. Thi HTH, Hong S (2017) Inflammasome as a therapeutic target for Cancer Prevention and Treatment[J]. J Cancer Prev 22(2):62–73

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li D, Wu M (2021) Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther 6(1):291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zindel J, Kubes P (2020) DAMPs, PAMPs, and LAMPs in immunity and sterile Inflammation[J]. Annu Rev Pathol 15:493–518

    Article  CAS  PubMed  Google Scholar 

  31. Gong T, Liu L, Jiang W et al (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol 20(2):95–112

    Article  CAS  PubMed  Google Scholar 

  32. Takeda K, Akira S (2015) Toll-like receptors[J]. Curr Protoc Immunol, 109: 14.12.1-14.12.10

  33. Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation[J]. Nat Rev Immunol 17(3):208–214

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Zhang Z, Ruan J et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature 535(7610):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He WT, Wan H, Hu L et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kayagaki N, Wong MT, Stowe IB et al (2013) Noncanonical inflammasome activation by intracellular LPS Independent of TLR4[J]. Science 341(6151):1246–1249

    Article  CAS  PubMed  Google Scholar 

  37. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature 526(7575):666–671

    Article  CAS  PubMed  Google Scholar 

  38. Kayagaki N, Warming S, Lamkanfi M et al (2011) Non-canonical inflammasome activation targets caspase-11[J]. Nature 479(7371):117–121

    Article  CAS  PubMed  Google Scholar 

  39. Yang D, He Y, Muñoz-Planillo R et al (2015) Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock[J]. Immunity 43(5):923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muendlein HI, Jetton D, Connolly WM, Eidell KP, Magri Z, Smirnova I, Poltorak A (2020) cFLIPL protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science 367:1379–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sarhan J, Liu BC, Muendlein HI et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci U S A 115(46):E10888–e10897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kambara H, Liu F, Zhang X et al (2018) Gasdermin D exerts anti-inflammatory effects by promoting Neutrophil Death[J]. Cell Rep 22(11):2924–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Vasconcelos NM, Van Opdenbosch N, Van Gorp H et al (2019) Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture[J]. Cell Death Differ 26(1):146–161

    Article  PubMed  Google Scholar 

  44. Humphries F, Shmuel-Galia L, Ketelut-Carneiro N et al (2020) Succination inactivates gasdermin D and blocks pyroptosis[J]. Science 369(6511):1633–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pickering RJ, Bryant CE (2020) Preventing pores and inflammation[J]. Science 369(6511):1564–1565

    Article  CAS  PubMed  Google Scholar 

  46. Rühl S, Shkarina K, Demarco B et al (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation[J]. Science 362(6417):956–960

    Article  PubMed  Google Scholar 

  47. Wang D, Zheng J, Hu Q et al (2020) Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis[J]. Cell Death Differ 27(2):466–481

    Article  CAS  PubMed  Google Scholar 

  48. Yu P, Chen X, Peng C (2023) A new perspective in pyroptosis: lifting the veil on GSDMA activation[J]. Front Med,

  49. Deng W, Bai Y, Deng F et al (2022) Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis[J]. Nature 602(7897):496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larock DL, Johnson AF, Wilde S et al (2022) Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes[J]. Nature 605(7910):527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Gao W, Shi X et al (2017) Chemotherapy Drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature 547(7661):99–103

    Article  CAS  PubMed  Google Scholar 

  52. Zheng Z, Bian Y, Zhang Y et al (2020) Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis[J]. Cell Cycle 19(10):1089–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan G, Huang C, Chen J et al (2020) HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated Colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol 13(1):149

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Wang W, Li A et al (2021) Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in Breast cancer cells[J]. Chem Biol Interact 340:109434

    Article  CAS  PubMed  Google Scholar 

  55. Ding Q, Zhang W, Cheng C et al (2020) Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo[J]. J Cell Physiol 235(3):2911–2924

    Article  CAS  PubMed  Google Scholar 

  56. Cai J, Yi M, Tan Y et al (2021) Natural product triptolide induces GSDME-mediated pyroptosis in Head and Neck cancer through suppressing mitochondrial hexokinase-ΙΙ[J]. J Exp Clin Cancer Res 40(1):190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng X, Zhong T, Ma Y et al (2020) Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME[J]. Life Sci 242:117186

    Article  CAS  PubMed  Google Scholar 

  58. Jiang M, Qi L, Li L et al (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang Y, Yin B, Li D et al (2018) GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun 495(1):1418–1425

    Article  CAS  PubMed  Google Scholar 

  60. Ewen CL, Kane KP, Bleackley RC (2012) A quarter century of granzymes[J]. Cell Death Differ 19(1):28–35

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Fang Y, Chen X et al (2020) Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 5(43)

  62. Zhang Z, Zhang Y, Xia S et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature 579(7799):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Newton K, Wickliffe KE, Maltzman A et al (2019) Activity of caspase-8 determines plasticity between cell death pathways[J]. Nature 575(7784):679–682

    Article  CAS  PubMed  Google Scholar 

  64. Zhang JY, Zhou B, Sun RY et al (2021) The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8[J]. Cell Res 31(9):980–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hou J, Zhao R, Xia W et al (2020) PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol 22(10):1264–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou Z, He H, Wang K et al (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 368(6494)

  67. Chauhan D, Demon D, Vande Walle L et al (2022) GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis[J]. EMBO Rep 23(10):e54277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chao KL, Kulakova L, Herzberg O (2017) Gene polymorphism linked to increased Asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc Natl Acad Sci USA 114:E1128–E1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hou J, Wang S, Miao R et al (2023) Detection of gasdermin C-Mediated Cancer Cell Pyroptosis[J]. Methods Mol Biol 2641:135–146

    Article  CAS  PubMed  Google Scholar 

  70. Yang F, Bettadapura SN, Smeltzer MS et al (2022) Pyroptosis and pyroptosis-inducing cancer drugs[J]. Acta Pharmacol Sin 43(10):2462–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia X, Wang X, Cheng Z et al (2019) The role of pyroptosis in cancer: pro-cancer or pro-host?[J]. Cell Death Dis 10(9):650

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lu X, Guo T, Zhang X (2021) Pyroptosis in Cancer: friend or foe?[J]. Cancers (Basel), 13(14)

  73. Wang F, Li G, Ning J et al (2018) Alcohol accumulation promotes esophagitis via pyroptosis activation[J]. Int J Biol Sci 14(10):1245–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Q, Wang Y, Ding J et al (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis[J]. Nature 579(7799):421–426

    Article  CAS  PubMed  Google Scholar 

  75. Galluzzi L, Buqué A, Kepp O et al (2017) Immunogenic cell death in cancer and Infectious disease[J]. Nat Rev Immunol 17(2):97–111

    Article  CAS  PubMed  Google Scholar 

  76. Aizawa E, Karasawa T, Watanabe S et al (2020) GSDME-Dependent incomplete pyroptosis permits selective IL-1α release under Caspase-1 Inhibition[J]. iScience 23(5):101070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Vasconcelos NM, Van Opdenbosch N, Van Gorp H et al (2020) An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages[J]. Cell Rep 32(4):107959

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schwarzer R, Jiao H, Wachsmuth L et al (2020) FADD and Caspase-8 regulate gut homeostasis and inflammation by Controlling MLKL- and GSDMD-Mediated death of intestinal epithelial Cells[J]. Immunity 52(6):978–993e6

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Sharif H, Vora SM et al (2021) Structures and functions of the inflammasome engine[J]. J Allergy Clin Immunol 147(6):2021–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shen E, Han Y, Cai C et al (2021) Low expression of NLRP1 is associated with a poor prognosis and immune infiltration in lung adenocarcinoma patients[J]. Aging 13(5):7570–7588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Williams TM, Leeth RA, Rothschild DE et al (2015) The NLRP1 inflammasome attenuates Colitis and colitis-associated tumorigenesis[J]. J Immunol 194(7):3369–3380

    Article  CAS  PubMed  Google Scholar 

  82. Salaro E, Rambaldi A, Falzoni S et al (2016) Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death[J]. Sci Rep 6:26280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zaki MH, Vogel P, Body-Malapel M et al (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal Tumor formation[J]. J Immunol 185(8):4912–4920

    Article  CAS  PubMed  Google Scholar 

  84. Markowitz GJ, Yang P, Fu J et al (2016) Inflammation-dependent IL18 Signaling restricts Hepatocellular Carcinoma Growth by enhancing the Accumulation and Activity of Tumor-infiltrating Lymphocytes[J]. Cancer Res 76(8):2394–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Daley D, Mani VR, Mohan N et al (2017) NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma[J]. J Exp Med 214(6):1711–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sharma D, Malik A, Guy CS et al (2018) Pyrin Inflammasome regulates tight Junction Integrity to restrict Colitis and Tumorigenesis[J]. Gastroenterology 154(4):948–964e8

    Article  CAS  PubMed  Google Scholar 

  87. Terme M, Ullrich E, Aymeric L et al (2011) IL-18 induces PD-1-dependent immunosuppression in cancer[J]. Cancer Res 71(16):5393–5399

    Article  CAS  PubMed  Google Scholar 

  88. Dupaul-Chicoine J, Arabzadeh A, Dagenais M et al (2015) The Nlrp3 Inflammasome suppresses Colorectal Cancer Metastatic Growth in the liver by promoting natural killer cell tumoricidal Activity[J]. Immunity 43(4):751–763

    Article  CAS  PubMed  Google Scholar 

  89. Dmitrieva-Posocco O, Dzutsev A, Posocco DF et al (2019) Cell-type-specific responses to Interleukin-1 Control Microbial Invasion and Tumor-elicited inflammation in Colorectal Cancer[J]. Immunity 50(1):166–180e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo X, Zhang X, Gan L et al (2018) The outer membrane protein Tp92 of Treponema pallidum induces human mononuclear cell death and IL-8 secretion[J]. J Cell Mol Med 22(12):6039–6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim MS, Chang X, Yamashita K et al (2008) Aberrant promoter methylation and Tumor suppressive activity of the DFNA5 gene in colorectal carcinoma[J]. Oncogene 27(25):3624–3634

    Article  CAS  PubMed  Google Scholar 

  92. De Beeck KO, Van Laer L, Van Camp G (2012) DFNA5, a gene involved in hearing loss and cancer: a review[J]. Ann Otol Rhinol Laryngol 121(3):197–207

    Article  PubMed  Google Scholar 

  93. Yokomizo K, Harada Y, Kijima K et al (2012) Methylation of the DFNA5 gene is frequently detected in Colorectal cancer[J]. Anticancer Res 32(4):1319–1322

    CAS  PubMed  Google Scholar 

  94. Wang CJ, Tang L, Shen DW et al (2013) The expression and regulation of DFNA5 in human hepatocellular carcinoma DFNA5 in hepatocellular carcinoma[J]. Mol Biol Rep 40(12):6525–6531

    Article  CAS  PubMed  Google Scholar 

  95. Teng JF, Mei QB, Zhou XG et al (2020) Polyphyllin VI induces caspase-1-Mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-small Cell Lung Cancer[J]. Cancers (Basel), 12(1)

  96. Zhang R, Chen J, Mao L et al (2020) Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating Autophagy in Ovarian Cancer Cells[J]. J Agric Food Chem 68(5):1326–1336

    Article  CAS  PubMed  Google Scholar 

  97. Chen J, Wang Z, Yu S (2017) AIM2 regulates viability and apoptosis in human Colorectal cancer cells via the PI3K/Akt pathway[J]. Onco Targets Ther 10:811–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei Q, Mu K, Li T et al (2014) Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during Liver cancer progression[J]. Lab Invest 94(1):52–62

    Article  CAS  PubMed  Google Scholar 

  99. Ma X, Guo P, Qiu Y et al (2016) Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway[J]. Oncotarget 7(24):36185–36197

    Article  PubMed  PubMed Central  Google Scholar 

  100. Janowski AM, Colegio OR, Hornick EE et al (2016) NLRC4 suppresses Melanoma Tumor progression independently of inflammasome activation[J]. J Clin Invest 126(10):3917–3928

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rogers C, Erkes DA, Nardone A et al (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation[J]. Nat Commun 10(1):1689

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang F, Liu W, Ning J et al (2018) Simvastatin suppresses Proliferation and Migration in Non-small Cell Lung Cancer via Pyroptosis[J]. Int J Biol Sci 14(4):406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang WJ, Chen D, Jiang MZ et al (2018) Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins[J]. J Dig Dis 19(2):74–83

    Article  CAS  PubMed  Google Scholar 

  104. Yue E, Tuguzbaeva G, Chen X et al (2019) Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma[J]. Phytomedicine 56:286–294

    Article  CAS  PubMed  Google Scholar 

  105. Nakamura K, Kassem S, Cleynen A et al (2018) Dysregulated IL-18 is a key driver of Immunosuppression and a possible therapeutic target in the Multiple Myeloma Microenvironment[J]. Cancer Cell 33(4):634–648e5

    Article  CAS  PubMed  Google Scholar 

  106. Zhao X, Zhang C, Hua M et al (2017) NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma[J]. Oncotarget 8(65):108571–108583

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lu F, Zhao Y, Pang Y et al (2021) NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma[J]. Cancer Lett 497:178–189

    Article  CAS  PubMed  Google Scholar 

  108. Zienolddiny S, Ryberg D, Maggini V et al (2004) Polymorphisms of the interleukin-1 beta gene are associated with increased risk of non-small cell Lung cancer[J]. Int J Cancer 109(3):353–356

    Article  CAS  PubMed  Google Scholar 

  109. Kong H, Wang Y, Zeng X et al (2015) Differential expression of inflammasomes in Lung cancer cell lines and tissues[J]. Tumour Biol 36(10):7501–7513

    Article  CAS  PubMed  Google Scholar 

  110. Zhai Z, Liu W, Kaur M et al (2017) NLRP1 promotes Tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma[J]. Oncogene 36(27):3820–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsai CY, Lee TS, Kou YR et al (2009) Glucosamine inhibits IL-1beta-mediated IL-8 production in Prostate cancer cells by MAPK attenuation[J]. J Cell Biochem 108(2):489–498

    Article  CAS  PubMed  Google Scholar 

  112. Zhu Y, Zhu M, Lance P (2012) IL1β-mediated stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells[J]. Exp Cell Res 318(19):2520–2530

    Article  CAS  PubMed  Google Scholar 

  113. Fathima Hurmath K, Ramaswamy P, Nandakumar DN (2014) IL-1β microenvironment promotes proliferation, migration, and invasion of human glioma cells[J]. Cell Biol Int 38(12):1415–1422

    Article  CAS  PubMed  Google Scholar 

  114. Weichand B, Popp R, Dziumbla S et al (2017) S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and Metastasis via NLRP3/IL-1β[J]. J Exp Med 214(9):2695–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hergueta-Redondo M, Sarrió D, Molina-Crespo Á et al (2014) Gasdermin-B promotes invasion and Metastasis in Breast cancer cells[J]. PLoS ONE 9(3):e90099

    Article  PubMed  PubMed Central  Google Scholar 

  116. Komiyama H, Aoki A, Tanaka S et al (2010) Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB)[J]. Genes Genet Syst 85(1):75–83

    Article  CAS  PubMed  Google Scholar 

  117. Lutkowska A, Roszak A, Lianeri M et al (2017) Analysis of rs8067378 polymorphism in the risk of uterine Cervical Cancer from a Polish Population and its impact on Gasdermin B Expression[J]. Mol Diagn Ther 21(2):199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Molina-Crespo Á, Cadete A, Sarrio D et al (2019) Intracellular delivery of an antibody targeting Gasdermin-B reduces HER2 Breast Cancer Aggressiveness[J]. Clin Cancer Res 25(15):4846–4858

    Article  CAS  PubMed  Google Scholar 

  119. Wei J, Xu Z, Chen X et al (2020) Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma[J]. Mol Med Rep 21(1):360–370

    CAS  PubMed  Google Scholar 

  120. Wang Y, Kong H, Zeng X et al (2016) Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 Lung cancer cells[J]. Oncol Rep 35(4):2053–2064

    Article  CAS  PubMed  Google Scholar 

  121. Zhang M, Jin C, Yang Y et al (2019) AIM2 promotes non-small-cell Lung cancer cell growth through inflammasome-dependent pathway[J]. J Cell Physiol 234(11):20161–20173

    Article  CAS  PubMed  Google Scholar 

  122. Gao J, Qiu X, Xi G et al (2018) Downregulation of GSDMD attenuates Tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non–small cell Lung cancer[J]. Oncol Rep 40(4):1971–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kolb R, Phan L, Borcherding N et al (2016) Obesity-associated NLRC4 inflammasome activation drives Breast cancer progression[J]. Nat Commun 7:13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guo B, Fu S, Zhang J et al (2016) Targeting inflammasome/IL-1 pathways for cancer immunotherapy[J]. Sci Rep 6:36107

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang H, Luo Q, Feng X et al (2018) NLRP3 promotes Tumor growth and Metastasis in human oral squamous cell carcinoma[J]. BMC Cancer 18(1):500

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang H, Wang Y, Du Q et al (2016) Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon Cancer cells[J]. Exp Cell Res 342(2):184–192

    Article  CAS  PubMed  Google Scholar 

  127. Li L, Liu Y (2015) Aging-related gene signature regulated by Nlrp3 predicts glioma progression[J]. Am J Cancer Res 5(1):442–449

    PubMed  Google Scholar 

  128. Wang WH, Huang JQ, Zheng GF et al (2003) Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis[J]. J Natl Cancer Inst 95(23):1784–1791

    Article  CAS  PubMed  Google Scholar 

  129. Sanui T, Takeshita M, Fukuda T et al (2017) Anti-CD14 antibody-treated neutrophils respond to LPS: possible involvement of CD14 upregulated by Anti-CD14 antibody Binding[J]. Immunol Invest 46(2):190–200

    Article  CAS  PubMed  Google Scholar 

  130. Bouis DA, Popova TG, Takashima A et al (2001) Dendritic cells phagocytose and are activated by Treponema pallidum[J]. Infect Immun 69(1):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hawley KL, Martín-Ruiz I, Iglesias-Pedraz JM et al (2013) CD14 targets complement receptor 3 to lipid rafts during phagocytosis of Borrelia burgdorferi[J]. Int J Biol Sci 9(8):803–810

    Article  PubMed  PubMed Central  Google Scholar 

  132. Norgard MV, Arndt LL, Akins DR et al (1996) Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a pathway distinct from that of lipopolysaccharide but involves the transcriptional activator NF-kappa B[J]. Infect Immun 64(9):3845–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ju X, Yang Z, Zhang H et al (2021) Role of pyroptosis in cancer cells and clinical applications[J]. Biochimie 185:78–86

    Article  CAS  PubMed  Google Scholar 

  134. Ball B, Zeidan A, Gore SD et al (2017) Hypomethylating agent combination strategies in myelodysplastic syndromes: hopes and shortcomings[J]. Leuk Lymphoma 58(5):1022–1036

    Article  CAS  PubMed  Google Scholar 

  135. Chen C, Wang B, Sun J et al (2015) DAC can restore expression of NALP1 to suppress Tumor growth in colon cancer[J]. Cell Death Dis 6(1):e1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lu H, Zhang S, Wu J et al (2018) Molecular targeted therapies elicit concurrent apoptotic and GSDME-Dependent pyroptotic Tumor cell Death[J]. Clin Cancer Res 24(23):6066–6077

    Article  CAS  PubMed  Google Scholar 

  137. Zhang J, Chen Y, He Q (2020) Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human Lung cancer A549 cells and neuroblastoma SH-SY5Y cells[J]. Oncol Lett 20(1):145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang CC, Li CG, Wang YF et al (2019) Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 Lung cancer cells via caspase-3/GSDME activation[J]. Apoptosis 24(3–4):312–325

    Article  CAS  PubMed  Google Scholar 

  139. Hu L, Chen M, Chen X et al (2020) Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis 11(4):281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li Q, Wang M, Zhang Y et al (2020) BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis[J]. Acta Biochim Biophys Sin (Shanghai) 52(10):1131–1139

    Article  CAS  PubMed  Google Scholar 

  141. Wu M, Wang Y, Yang D et al (2019) A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine 41:244–255

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yu J, Li S, Qi J et al (2019) Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon Cancer cells[J]. Cell Death Dis 10(3):193

    Article  PubMed  PubMed Central  Google Scholar 

  143. Westbom C, Thompson JK, Leggett A et al (2015) Inflammasome Modulation by Chemotherapeutics in Malignant Mesothelioma[J]. PLoS ONE 10(12):e0145404

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tian W, Wang Z, Tang NN et al (2020) Ascorbic acid sensitizes colorectal carcinoma to the cytotoxicity of Arsenic Trioxide via promoting reactive oxygen species-dependent apoptosis and Pyroptosis[J]. Front Pharmacol 11:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hage C, Hoves S, Strauss L et al (2019) Sorafenib induces pyroptosis in macrophages and triggers natural killer cell-mediated cytotoxicity against Hepatocellular Carcinoma[J]. Hepatology 70(4):1280–1297

    Article  CAS  PubMed  Google Scholar 

  146. Draganov D, Han Z, Rana A et al (2021) Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of Breast cancer[J]. NPJ Breast Cancer 7(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Erkes DA, Cai W, Sanchez IM et al (2020) Mutant BRAF and MEK inhibitors regulate the Tumor Immune Microenvironment via Pyroptosis[J]. Cancer Discov 10(2):254–269

    Article  CAS  PubMed  Google Scholar 

  148. Zhou B, Zhang JY, Liu XS et al (2018) Tom20 senses iron-activated ROS signaling to promote Melanoma cell pyroptosis[J]. Cell Res 28(12):1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yang W, Liu S, Li Y et al (2020) Pyridoxine induces monocyte-macrophages death as specific treatment of acute Myeloid leukemia[J]. Cancer Lett 492:96–105

    Article  CAS  PubMed  Google Scholar 

  150. Gao W, Wang X, Zhou Y et al (2022) Autophagy, ferroptosis, pyroptosis, and necroptosis in Tumor immunotherapy[J]. Signal Transduct Target Ther 7(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  151. Xu-Monette ZY, Zhou J, Young KH (2018) PD-1 expression and clinical PD-1 blockade in B-cell lymphomas[J]. Blood 131(1):68–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang X, Guo G, Guan H et al (2019) Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma[J]. J Exp Clin Cancer Res 38(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang MY, Jiang XM, Wang BL et al (2021) Combination therapy with PD-1/PD-L1 blockade in non-small cell Lung cancer: strategies and mechanisms[J]. Pharmacol Ther 219:107694

    Article  CAS  PubMed  Google Scholar 

  154. Han G, Yang G, Hao D et al (2021) 9p21 loss confers a cold Tumor immune microenvironment and primary resistance to immune checkpoint therapy[J]. Nat Commun 12(1):5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kumagai S, Togashi Y, Kamada T et al (2020) The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies[J]. Nat Immunol 21(11):1346–1358

    Article  CAS  PubMed  Google Scholar 

  156. Lu C, Guo C, Chen H et al (2020) A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human Lung cancer H1299 cells by triggering pyroptosis[J]. Mol Immunol 122:200–206

    Article  CAS  PubMed  Google Scholar 

  157. Okondo MC, Johnson DC, Sridharan R et al (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis[J]. Nat Chem Biol 13(1):46–53

    Article  CAS  PubMed  Google Scholar 

  158. Johnson DC, Taabazuing CY, Okondo MC et al (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute Myeloid leukemia[J]. Nat Med 24(8):1151–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bai B, Chen Q, Jing R et al (2021) Molecular basis of Prostate Cancer and Natural products as potential chemotherapeutic and chemopreventive Agents[J]. Front Pharmacol 12:738235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu Y, Yang S, Wang K et al (2020) Cellular senescence and cancer: focusing on traditional Chinese medicine and natural products[J]. Cell Prolif 53(10):e12894

    Article  PubMed  PubMed Central  Google Scholar 

  161. Xiang Y, Guo Z, Zhu P et al (2019) Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science[J]. Cancer Med 8(5):1958–1975

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang Y, Zhang Q, Chen Y et al (2020) Antitumor effects of immunity-enhancing traditional Chinese medicine[J]. Biomed Pharmacother 121:109570

    Article  CAS  PubMed  Google Scholar 

  163. Chu Q, Jiang Y, Zhang W et al (2016) Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma[J]. Oncotarget 7(51):84658–84665

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhang X, Zhang P, An L et al (2020) Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B 10(8):1397–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen YF, Qi HY, Wu FL (2018) Euxanthone exhibits anti-proliferative and anti-invasive activities in hepatocellular carcinoma by inducing pyroptosis: preliminary results[J]. Eur Rev Med Pharmacol Sci 22(23):8186–8196

    PubMed  Google Scholar 

  166. Yuan R, Zhao W, Wang QQ et al (2021) Cucurbitacin B inhibits non-small cell Lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis[J]. Pharmacol Res 170:105748

    Article  CAS  PubMed  Google Scholar 

  167. Sannino F, Sansone C, Galasso C et al (2018) Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells[J]. Sci Rep 8(1):1190

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zou J, Yang Y, Yang Y et al (2018) Polydatin suppresses proliferation and Metastasis of non-small cell Lung cancer cells by inhibiting NLRP3 inflammasome activation via NF-κB pathway[J]. Biomed Pharmacother 108:130–136

    Article  CAS  PubMed  Google Scholar 

  169. Yu Q, Zhang M, Ying Q et al (2019) Decrease of AIM2 mediated by luteolin contributes to non-small cell Lung cancer treatment[J]. Cell Death Dis 10(3):218

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liang J, Zhou J, Xu Y et al (2020) Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis[J]. Eur J Pharmacol 874:172990

    Article  CAS  PubMed  Google Scholar 

  171. Tan JQ, Li Z, Chen G et al (2022) The natural compound from Garcinia Bracteata mainly induces GSDME-mediated pyroptosis in Esophageal cancer cells[J]. Phytomedicine 102:154142

    Article  CAS  PubMed  Google Scholar 

  172. Zhang Y, Li M, Gao X et al (2019) Nanotechnology in cancer diagnosis: progress, challenges and opportunities[J]. J Hematol Oncol 12(1):137

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nadeem S, Yang C, Du Y, Li F, Chen Z, Zhou Y et al (2021) A virus-spike tumor-activatable pyroptotic agent. Small 17:e2006599

    Article  PubMed  Google Scholar 

  174. Yao J, Feng X, Dai X et al (2022) TMZ magnetic temperature-sensitive liposomes-mediated magnetothermal chemotherapy induces pyroptosis in glioblastoma[J]. Nanomedicine 43:102554

    Article  CAS  PubMed  Google Scholar 

  175. Li J, Luo G, Zhang C et al (2022) In situ injectable hydrogel-loaded Drugs induce anti-tumor immune responses in Melanoma immunochemotherapy[J]. Mater Today Bio 14:100238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Balahura LR, Dinescu S, Balaș M et al (2021) Cellulose nanofiber-based hydrogels embedding 5-FU promote pyroptosis activation in Breast Cancer cells and support human adipose-derived stem cell proliferation, opening new perspectives for breast tissue Engineering[J]. Pharmaceutics, 13(8)

  177. Hu J, Dong Y, Ding L et al (2019) Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment[J]. Signal Transduct Target Ther 4:28

    Article  PubMed  PubMed Central  Google Scholar 

  178. Yu Z, Cao W, Han C et al (2022) Biomimetic Metal-Organic Framework nanoparticles for Synergistic Combining of SDT-Chemotherapy Induce pyroptosis in gastric Cancer[J]. Front Bioeng Biotechnol 10:796820

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhao P, Wang M, Chen M et al (2020) Programming cell pyroptosis with biomimetic nanoparticles for solid Tumor immunotherapy[J]. Biomaterials 254:120142

    Article  CAS  PubMed  Google Scholar 

  180. Serna N, Álamo P, Ramesh P et al (2020) Nanostructured toxins for the selective destruction of drug-resistant human CXCR4(+) Colorectal cancer stem cells[J]. J Control Release 320:96–104

    Article  CAS  PubMed  Google Scholar 

  181. Ploetz E, Zimpel A, Cauda V et al (2020) Metal-Organic Framework nanoparticles induce pyroptosis in cells controlled by the Extracellular pH[J]. Adv Mater 32(19):e1907267

    Article  PubMed  Google Scholar 

  182. Jiang W, Yin L, Chen H et al (2019) NaCl nanoparticles as a Cancer Therapeutic[J]. Adv Mater 31(46):e1904058

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ding B, Sheng J, Zheng P et al (2021) Biodegradable Upconversion nanoparticles induce pyroptosis for Cancer Immunotherapy[J]. Nano Lett 21(19):8281–8289

    Article  CAS  PubMed  Google Scholar 

  184. Clerc P, Jeanjean P, Hallali N et al (2018) Targeted magnetic intra-lysosomal hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death[J]. J Control Release 270:120–134

    Article  CAS  PubMed  Google Scholar 

  185. Nadeem S, Yang C, Du Y et al (2021) A virus-spike tumor-activatable Pyroptotic Agent[J]. Small 17(8):e2006599

    Article  PubMed  Google Scholar 

  186. Liu Y, Zhen W, Wang Y et al (2020) Na(2)S(2)O(8) Nanoparticles Trigger Antitumor Immunotherapy through reactive oxygen species Storm and surge of Tumor Osmolarity[J]. J Am Chem Soc 142(52):21751–21757

    Article  CAS  PubMed  Google Scholar 

  187. CHEN D R, GAO Y, XIAO Y et al (2022) Engineered nanogels simultaneously implement HDAC inhibition and chemotherapy to boost antitumor immunity via pyroptosis[J]. Appl Mater Today, 26

  188. XIONG H G, MA X B, WANG X L et al (2021) Inspired epigenetic modulation synergy with Adenosine Inhibition elicits pyroptosis and Potentiates Cancer Immunotherapy[J]. Adv Funct Mater, 31(20)

  189. Wu D, Wang S, Yu G et al (2021) Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: prospects for Cancer Therapy[J]. Angew Chem Int Ed Engl 60(15):8018–8034

    Article  CAS  PubMed  Google Scholar 

  190. Zhao H, Song Q, Zheng C, Zhao B, Wu L, Feng Q et al (2020) Implantable bioresponsive nanoarray enhances postsurgical immunotherapy by activating pyroptosis and remodeling Tumor microenvironment. Adv Funct Mater 30:2005747

    Article  CAS  Google Scholar 

  191. Xiao Y, Zhang T, Ma X, Yang QC, Yang LL, Yang SC et al (2021) Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv Sci (Weinh) 8:e2101840

    Article  PubMed  Google Scholar 

  192. Fan JX, Deng RH, Wang H et al (2019) Epigenetics-based Tumor cells pyroptosis for enhancing the Immunological Effect of Chemotherapeutic Nanocarriers[J]. Nano Lett 19(11):8049–8058

    Article  CAS  PubMed  Google Scholar 

  193. Elrayess RA, Mohallal ME, Mobarak YM et al (2021) Scorpion venom antimicrobial peptides induce Caspase-1 dependant pyroptotic cell Death[J]. Front Pharmacol 12:788874

    Article  CAS  PubMed  Google Scholar 

  194. Derangère V, Chevriaux A, Courtaut F et al (2014) Liver X receptor β activation induces pyroptosis of human and murine colon Cancer cells[J]. Cell Death Differ 21(12):1914–1924

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pizato N, Luzete BC, Kiffer L et al (2018) Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells[J]. Sci Rep, 8(1): 1952

  196. Wei Q, Zhu R, Zhu J et al (2019) E2-Induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC Cells[J]. Oncol Res 27(7):827–834

    Article  PubMed  PubMed Central  Google Scholar 

  197. Qiao L, Wu X, Zhang J et al (2019) α-NETA induces pyroptosis of epithelial Ovarian cancer cells through the GSDMD/caspase-4 pathway[J]. Faseb j 33(11):12760–12767

    Article  CAS  PubMed  Google Scholar 

  198. Wang L, Li K, Lin X et al (2019) Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis[J]. Cancer Lett 450:22–31

    Article  CAS  PubMed  Google Scholar 

  199. Jia Y, Cui R, Wang C et al (2020) Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway[J]. Redox Biol 32:101534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu M, Liu X, Chen H, Duan Y, Liu J, Pan Y et al (2021) Activation of pyroptosis by membrane-anchoring AIE photosensitizer design: new prospect for photodynamic cancer cell ablation. Angew Chem Int Ed Engl 60:9093–9098

    Article  CAS  PubMed  Google Scholar 

  201. Hu J, Dong Y, Ding L, Dong Y, Wu Z, Wang W et al (2019) Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct Target Ther 4:28

    Article  PubMed  PubMed Central  Google Scholar 

  202. Tan YF, Wang M, Chen ZY, Wang L, Liu XH (2020) Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 11(4):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This study was financially supported by the National Natural Science Foundation of China (grant No. 81803916 and 82374223) and Natural Science Foundation of Jiangsu Province (grant No. BK20180128).

Author information

Authors and Affiliations

Authors

Contributions

Q Chen and Y Sun conceived the structure of manuscript and drafted the manuscript; Q Chen, S Wang and J Xu discussed and revised the manuscript. All authors read and approved final manuscript.

Corresponding authors

Correspondence to Siliang Wang or Jingyan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sun, Y., Wang, S. et al. New prospects of cancer therapy based on pyroptosis and pyroptosis inducers. Apoptosis 29, 66–85 (2024). https://doi.org/10.1007/s10495-023-01906-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01906-5

Keywords

Navigation