Skip to main content

Advertisement

Log in

Mechanism of tumor-derived extracellular vesicles in prostatic cancer progression through the circFMN2/KLF2/RNF128 axis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a major type of cargos encapsulated in extracellular vesicles (EVs) and regulate the progression of prostatic cancer (PC). This study was conducted to explore the role of tumor-derived EVs in PC cell proliferation, invasion, and migration via shuttle of circRNA formin 2 (circFMN2). RT-qPCR or Western blot assay showed that circFMN2 was upregulated while KLF2 and RNF128 were downregulated in PC tissues and cells. EVs were separated from PC cells and characterized and its internalization in PC cells was examined, which suggested that PC-EVs mediated the shuttle of circFMN2 to upregulate circFMN2 expression in PC cells. PC cell functions were determined by cell counting kit-8, colony formation and Transwell assays, which suggested that PC-EVs fueled the proliferation, invasion, and migration of PC cells. At cellular level, PC-EVs mediated the shuttle of circFMN2 to upregulate circFMN2 expression in PC cells, and circFMN2 binding to HuR decreased the HuR-KLF2 interaction and repressed KLF2 expression, which further reduced the KLF2-RNF128 promoter binding and repressed RNF128 transcription. Overexpression of KLF2/RNF128 ablated the effects of PC-EVs on the proliferation, invasion, and migration of PC cells. The xenograft tumor models and lung/liver metastasis models were established and revealed that PC-EVs accelerated tumorigenesis and metastasis in vivo via delivery of circFMN2 and repression of KLF2/RNF128.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. De Nunzio C, Lombardo R (2023) Best of 2022 in prostate cancer and prostatic diseases. Prostate Cancer Prostatic Dis 26:5–7

    Article  PubMed  Google Scholar 

  2. Achard V, Putora PM, Omlin A et al (2022) Metastatic prostate cancer: treatment options. Oncology 100:48–59

    Article  CAS  PubMed  Google Scholar 

  3. (2021) Prostate cancer. Nat Rev Dis Primers 7:8. https://doi.org/10.1038/s41572-021-00249-2

  4. Uhr A, Glick L, Gomella LG (2020) An overview of biomarkers in the diagnosis and management of prostate cancer. Can J Urol 27:24–27

    PubMed  Google Scholar 

  5. Bebelman MP, Smit MJ, Pegtel DM et al (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  6. Urabe F, Kosaka N, Ito K et al (2020) Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol Cell Physiol 318:C29–C39

    Article  CAS  PubMed  Google Scholar 

  7. Giovannelli P, Di Donato M, Galasso G et al (2021) Communication between cells: exosomes as a delivery system in prostate cancer. Cell Commun Signal 19:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen L, Shan G (2021) CircRNA in cancer: fundamental mechanism and clinical potential. Cancer Lett 505:49–57

    Article  CAS  PubMed  Google Scholar 

  9. Hua JT, Chen S, He HH (2019) Landscape of noncoding RNA in prostate cancer. Trends Genet 35:840–851

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Cai A, Zhao Y (2020) Three CircRNAs function as potential biomarkers for colorectal cancer. Clin Lab. https://doi.org/10.7754/Clin.Lab.2020.191265

    Article  PubMed  Google Scholar 

  11. Shan G, Shao B, Liu Q et al (2020) CircFMN2 sponges miR-1238 to promote the expression of LIM-Homeobox gene 2 in prostate cancer cells. Mol Ther Nucleic Acids 21:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan C, Zhu X, Zhou Q et al (2022) CircFMN2 boosts sorafenib resistance in hepatocellular carcinoma cells via upregulating cnbp by restraining ubiquitination. J Oncol 2022:2674163

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu H, Lan T, Li H et al (2021) Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics 11:1396–1411

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Wu Y, Luo X et al (2021) Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 11:7507–7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, He Y, Kan W et al (2019) MicroRNA-32-5p targets KLF2 to promote gastric cancer by activating PI3K/AKT signaling pathway. Am J Transl Res 11:4895–4908

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Tu S, Zeng Y et al (2020) KLF2 inhibits TGF-beta-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 52:485–494

    Article  CAS  PubMed  Google Scholar 

  17. Li R, Chen J, Gao X et al (2021) Transcription factor KLF2 enhances the sensitivity of breast cancer cells to cisplatin by suppressing kinase WEE1. Cancer Biol Ther 22:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu Y, Tong Y, Wu J et al (2019) Knockdown of LncRNA GHET1 suppresses prostate cancer cell proliferation by inhibiting HIF-1alpha/Notch-1 signaling pathway via KLF2. BioFactors 45:364–373

    Article  CAS  PubMed  Google Scholar 

  19. Wang B, Liu M, Song Y et al (2019) KLF2 inhibits the Migration and invasion of prostate cancer cells by downregulating MMP2. Am J Mens Health 13:1557988318816907

    Article  PubMed  Google Scholar 

  20. Bialkowska AB, Yang VW, Mallipattu SK (2017) Kruppel-like factors in mammalian stem cells and development. Development 144:737–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haymaker C, Yang Y, Wang J et al (2017) Absence of grail promotes CD8(+) T cell anti-tumour activity. Nat Commun 8:239

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ding L, Lin Y, Chen X et al (2023) CircPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/beta-catenin pathway. Cell Signal 102:110557

    Article  CAS  PubMed  Google Scholar 

  23. (2011) Guide for the care and use of laboratory animals, 8th edn. Washington, DC. https://doi.org/10.17226/12910

  24. Tang Y, Liu J, Li X et al (2021) Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. J Biosci. https://doi.org/10.1007/s12038-021-00190-2

    Article  PubMed  Google Scholar 

  25. Zhang Y, Liu F, Feng Y et al (2022) CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther 29:1731–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Li JH, Liu S, Zhou H et al (2014) StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–97

    Article  CAS  PubMed  Google Scholar 

  28. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165–D173

    Article  CAS  PubMed  Google Scholar 

  29. Fanale D, Taverna S, Russo A et al (2018) Circular RNA in exosomes. Adv Exp Med Biol 1087:109–117

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Zeng X, Zheng Y et al (2021) Exosomal circRNA in digestive system tumors: the main player or coadjuvants? Front Oncol 11:614462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xue P, Yan M, Wang K et al (2021) Up-regulation of LINC00665 facilitates the malignant progression of prostate cancer by epigenetically silencing KLF2 through EZH2 and LSD1. Front Oncol 11:639060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Zhao H, Zhang A et al (2022) Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in spare nerve injury-induced neuropathic pain. Cell Death Discov 8:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu F, Li C (2022) KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell Death Discov 8:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng Y, Li JX, Chen CJ et al (2020) Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol Int 44:1037–1045

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Li M, Zhang J et al (2021) Exosomal circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 axis. Drug Des Devel Ther 15:1835–1849

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ding L, Zheng Q, Lin Y et al (2023) Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med 13:e1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Li C, Xu R et al (2019) A novel circFMN2 promotes tumor proliferation in CRC by regulating the miR-1182/hTERT signaling pathways. Clin Sci (Lond) 133:2463–2479

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Xu L (2022) The RNA-binding protein HuR in human cancer: a friend or foe? Adv Drug Deliv Rev 184:114179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Qin H, Jiang B et al (2021) KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett 522:1–13

    Article  CAS  PubMed  Google Scholar 

  41. Mansour MA (2018) Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol 101:80–93

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Gan Y, Zou R et al (2021) RNF128 suppresses the malignancy of colorectal cancer cells via inhibition of Wnt/beta-catenin signaling. Am J Transl Res 13:13567–13578

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

SH and JZ participated in the design of the study and carried out the acquisition of data. HY and GC performed the experiment and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangfu Chen.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

The animal experiments were conducted under the guidance of Animal Care and Use Committee of The Third Medical Center of PLA General Hospital.

Consent to participant

All procedures involving human research conformed to the ethical standards of The Third Medical Center of PLA General Hospital and followed Declaration of Helsinki.

Consent for publication

Not required.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 47795.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhao, J., Yu, H. et al. Mechanism of tumor-derived extracellular vesicles in prostatic cancer progression through the circFMN2/KLF2/RNF128 axis. Apoptosis 28, 1372–1389 (2023). https://doi.org/10.1007/s10495-023-01872-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01872-y

Keywords

Navigation