Skip to main content

Advertisement

Log in

NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

NRP1 is a transmembrane glycoprotein that is highly expressed in a variety of tumors. There is evidence that NRP1 can enhance the stem cell properties of tumor cells, which are thought to be resistant to radiotherapy. This study aims to elucidate the potential mechanism of NRP1 in radiation resistance. We transfected NRP1 siRNA and plasmid in breast cancer cells to detect the expression of cancer stem cell markers by western blot and qRT-PCR. The effect of NRP1 on radiotherapy resistance was assesses by immunofluorescence and flow cytometry. In vivo, we established xenograft tumor model treating with shRNA-NRP1 to assess radiotherapy sensitivity. We found that NRP1 could enhance the stem cell properties and confer radioresistance of breast cancer cells. Mechanistically, we proved that NRP1 reduced IR-induced apoptosis by downregulation of Bcl-2 via methyltransferase WTAP in m6A-depentent way. It is suggested that these molecules may be the therapeutic targets for improving the efficacy of radiotherapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Date availability

The data and materials in the current study are available from the corresponding author on reasonable request.

Abbreviations

BC:

Breast cancer

NRP1:

Neuropilin-1

CSCs:

Cancer stem cells

BCSCs:

Breast cancer stem cells

WTAP:

Wilms tumoe1-associated protein

IHC:

Immunohistochemistry

FS:

Field size

SSD:

Source-surfaced distance

IP:

Immunoprecipitation

OS:

Overall survival

DFS:

Disease-free survival

dsDNA:

Double-stand DNA

MeRIP:

Methylated RNA immunoprecipitation

Bcl-2:

B-cell lymphoma 2

DEPC:

Diethyl pyrocarbonate

EG00229:

Neuropilin 1 (NRP1) receptor antagonist

ER:

Estrogen receptor

EDTA:

Ethylene diamine tetraacetic acid

H&E:

Hematozlin and eosin stain

IR:

Ionizing radiation

m6A:

N6-methyladenosine

PMSF:

Phenylmethanesulfonyl fluoride

RTK:

Receptor tyrosine kinase

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Speers C, Zhao S, Liu M, Bartelink H, Pierce LJ, Feng FY (2015) Development and validation of a novel radiosensitivity signature in Human breast cancer. Clin Cancer Res 21:3667–3677

    Article  CAS  PubMed  Google Scholar 

  3. Ebctcg MP, Taylor C, Correa C, Cutter D, Duane F et al (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383:2127–2135

    Article  Google Scholar 

  4. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90:739–751

    Article  CAS  PubMed  Google Scholar 

  5. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    Article  CAS  PubMed  Google Scholar 

  6. Douyere M, Chastagner P, Boura C (2021) Neuropilin-1: a key protein to consider in the progression of pediatric brain tumors. Front Oncol 11:665634

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rachner TD, Kasimir-Bauer S, Goebel A, Erdmann K, Hoffmann O, Rauner M et al (2021) Soluble Neuropilin-1 is an independent marker of poor prognosis in early breast cancer. J Cancer Res Clin Oncol 147:2233–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  9. Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT et al (2018) Targeting cancer stem cells to overcome chemoresistance. Int J Mol Sci 19:4036

    Article  PubMed  PubMed Central  Google Scholar 

  10. da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Munoz P (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin Cancer Biol 53:48–58

    Article  PubMed  Google Scholar 

  11. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K et al (2013) GLI1 regulates a novel Neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med 5:488–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478:399–403

    Article  CAS  PubMed  Google Scholar 

  13. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peng K, Bai Y, Zhu Q, Hu B, Xu Y (2019) Targeting VEGF-Neuropilin interactions: a promising antitumor strategy. Drug Discov Today 24:656–664

    Article  CAS  PubMed  Google Scholar 

  15. Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ (2021) N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 14:117

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Ma R, Zhang X, Cui L, Ding Y, Shi W et al (2021) Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Mol Cancer 20:121

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xie W, Wei L, Guo J, Guo H, Song X, Sheng X (2019) Physiological functions of Wilms’ tumor 1-associating protein and its role in tumourigenesis. J Cell Biochem. https://doi.org/10.1002/jcb.28402

    Article  PubMed  Google Scholar 

  18. Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli LC, Capuano E et al (2018) METTL3 regulates WTAP protein homeostasis. Cell Death Dis 9:796

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mercurio AM (2019) VEGF/Neuropilin signaling in cancer stem cells. Int J Mol Sci 20:490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jarvis A, Allerston CK, Jia H, Herzog B, Garza-Garcia A, Winfield N et al (2010) Small molecule inhibitors of the Neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J Med Chem 53:2215–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Zhang Z, Zhou L, Hu L, Yin C, Qing D et al (2020) Cancer associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp Cell Res 391:111956

    Article  CAS  PubMed  Google Scholar 

  22. Sun X, He Z, Guo L, Wang C, Lin C, Ye L et al (2021) ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-beta receptor II in breast cancer. J Exp Clin Cancer Res 40:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  24. Grun D, Adhikary G, Eckert RL (2018) NRP-1 interacts with GIPC1 and alpha6/beta4-integrins to increase YAP1/Np63alpha-dependent epidermal cancer stem cell survival. Oncogene 37:4711–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu L, Wu D, Ning J, Liu W, Zhang D (2019) Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 19:326

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Wu K, Gu S, Wang W, Xie S, Lu T et al (2021) A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med 11:e545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu ZJ, Pang Y, Jin G, Zhang HY, Wang WH, Liu JW et al (2021) Hypoxia induces chemoresistance of esophageal cancer cells to cisplatin through regulating the lncRNA-EMS/miR-758-3p/WTAP axis. Aging (Albany NY) 13:17155–17176

    Article  CAS  PubMed  Google Scholar 

  28. Deng J, Zhang J, Ye Y, Liu K, Zeng L, Huang J et al (2021) N(6) -methyladenosine-mediated upregulation of WTAPP1 promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Res 81:5268–5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Not applicable.

Funding

This work is supported by Project of Jiangsu Health Commission(M2020072).

Author information

Authors and Affiliations

Authors

Contributions

DSP and LSZ: designed the study. YW, LZ: performed the main experiments, and XLS: participated in some experiments. YW: drafted the manuscript, YCL and SC: revised the manuscript. All authors provided final approval and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Lan-Sheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Ethical approval

The experiments were approved by the ethics committee of the Second Affiliated Hospital of Xuzhou Medical University, and The Institutional Animal Care and Use Committee of Xuzhou Medical University. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent for publication

All authors consent to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Sun, XL. et al. NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer. Apoptosis 28, 233–246 (2023). https://doi.org/10.1007/s10495-022-01784-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01784-3

Keywords

Navigation