Skip to main content

Advertisement

Log in

Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Metastatic colorectal cancer responds poorly to treatment and is a leading cause of cancer related deaths. Worldwide, chemotherapy of metastatic colorectal cancer remains plagued by poor efficacy, development of resistance and serious adverse effects. Copper-imidazo[1,2-a]pyridines were previously shown by our group to be selectively active against several cancer cell lines, with three complexes, JD46(27), JD47(29), and JD88(21), showing IC50 values between 0.8 and 1.8 μM against HT-29 cells. Here, we report that treatment with the copper complexes resulted in fragmented nuclei suggestive of apoptotic cell death, which was confirmed by increased annexin V binding and caspase-3/7 activity. The copper complexes caused a loss of mitochondrial membrane potential and increased caspase-9 activity. The absence of caspase-8 activity indicated activation of the intrinsic pathway. Proteomic analysis revealed that copper-imidazo[1,2-a]pyridines decreased the expression of phosphorylated forms of p53 [phospho-p53(S15), phospho-p53(S46) and phospho-p53(S392)]. The expression of inhibitor of apoptosis proteins, XIAP, cIAP1, livin, and the antiapoptotic proteins, Bcl-2 and Bcl-x, was decreased. HO/HMOX/HSP32, expression was notably increased, which suggested the accumulation of reactive oxygen species. Increased expression of TRAIL-R2/DR5 death receptor indicated the possible dual activation of both the extrinsic and intrinsic apoptotic pathways; however, caspase-8 activation could not be demonstrated. In conclusion, the copper-imidazo[1,2-a]pyridines were effective inducers of apoptotic cell death at low micromolar concentrations and changed the expression levels of proteins important for cell survival and cell death. These copper complexes may be useful tools to better understand the complexity of signalling networks in cancer cell death in response to cell stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Field Κ, Lipton L (2007) Metastatic colorectal cancer-past, progress and future. World J Gastroenterol 13:3806–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holch J, Stintzinga S, Heinemann V (2016) Treatment of metastatic colorectal cancer: standard of care and future perspectives. Visc Med 32:178–183

    Article  PubMed  PubMed Central  Google Scholar 

  3. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  PubMed  Google Scholar 

  4. Wang F, Jiao P, Qi M, Frezza M, Dou QP, Yan B (2010) Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry. Curr Med Chem 17(25):2685–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862

    Article  CAS  PubMed  Google Scholar 

  6. McGivern T, Afsharpour S, Marmion C (2018) Copper complexes as artificial DNA metallonucleases: from Sigman’s reagent to next generation anti-cancer agent? Inorg Chim Acta 472:12–39.

    Article  CAS  Google Scholar 

  7. Tardito S, Marchio L (2009) Copper compounds in anticancer strategies. Curr Med Chem 16(11):1325–1348

    Article  CAS  PubMed  Google Scholar 

  8. Yee EMH, Brandl M, Pasquier E, Cirillo G, Kimpton K, Maria Kavallaris M, Kumar Vittorio O (2017) Dextran-catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Sci Rep 7:7638–7648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 60(7):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stepien M, Hughes DJ, Hybsier S, Bamia C, Tjønneland A, Overvad K, Affret A, His M, Boutron-Ruault M, Katzke V et al (2017) Circulating copper and zinc levels and risk of hepatobiliary cancers in Europeans. Br J Cancer 116:688–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mondola P, Damiano S, Sasso A, Santillo M (2016) The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front Physiol 7:594

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper centre of tyrosinase is flexible during catalysis. J Biol Chem 281(13):8981–8990

    Article  CAS  PubMed  Google Scholar 

  13. Tyagi N, Viji M, Karunakaran SC, Varughese S, Ganesan S, Priya S, Saneesh Babu PS, Nair AS, Ramaiah D (2015) Enhancement in intramolecular interactions and in vitro biological activity of a tripodal tetradentate system upon complexation. Dalton Trans 44(35):15591–15601

    Article  CAS  PubMed  Google Scholar 

  14. Fei BL, Yin B, Li DD, Xu WS, Lu Y (2016) Enantiopure copper(II) complex of natural product rosin derivative: DNA binding, DNA cleavage and cytotoxicity. J Biol Inorg Chem 21(8):987–996

    Article  CAS  PubMed  Google Scholar 

  15. Ma T, Xu J, Wang Y, Yu H, Yang Y, Liu Y, Ding W, Zhu W, Chen R, Ge Z, Tan Y, Jia L, Zhu T (2015) Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties. J Inorg Biochem 144:38–46

    Article  CAS  PubMed  Google Scholar 

  16. Zhou X, Li Y, Zhang D, Nie Y, Li Z, Gu W, Liu X, Tian Y, Yan S (2016) Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. Eur J Med Chem 114:244–256

    Article  CAS  PubMed  Google Scholar 

  17. Vyas KM, Devkar RV, Prajapati A, Jadeja RN (2015) Pyrazolone incorporating bipyridyl metallo-intercalators as effective DNA, protein and lung cancer targets: synthesis, characterization and in vitro biocidal evaluation. Chem Biol Interact 240:250–266

    Article  CAS  PubMed  Google Scholar 

  18. Deep A, Bhatia RK, Kaur R, Kumar S, Jain UK, Singh H, Batra S, Kaushik D, Deb PK (2017) Imidazo[1,2-a]pyridine scaffold as prospective therapeutic agents. Curr Top Med Chem 17(2):238–250

    Article  CAS  PubMed  Google Scholar 

  19. Goel R, Luxami V, Paul K (2016) Imidazo[1,2-a]pyridines: promising drug candidate for antitumor therapy. Curr Top Med Chem 16(30):3590–3616

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang ZP, Kung MP, Wilson A, Lee CW, Plössl K, Hou C, Holtzman DM, Kung HF (2003) Structure-activity relationship of imidazo[1,2-a]pyridines as ligands for detecting beta-amyloid plaques in the brain. J Med Chem 46(2):237–243

    Article  CAS  PubMed  Google Scholar 

  21. Boulahjar R, Rincon Arias A, Bolteau R, Renault N, Coevoet M, Barczyk A, Duroux R, Yous S, Melnyk P, Agouridas L (2018) Design and synthesis of 2,6-disubstituted-8-amino imidazo[1,2-a]pyridines, a promising privileged structure. Bioorg Med Chem 26(12):3296–3307

    Article  CAS  PubMed  Google Scholar 

  22. Lawson M, Rodrigo J, Baratte B, Robert T, Delehouzé C, Lozach O, Ruchaud S, Bach S, Brion JD, Alami M, Hamze A (2016) Synthesis, biological evaluation and molecular modelling studies of imidazo[1,2-a]pyridines derivatives as protein kinase inhibitors. Eur J Med Chem 123:105–114

    Article  CAS  PubMed  Google Scholar 

  23. Byth KF, Geh C, Forder CL, Oakes SE, Thomas AP (2006) The cellular phenotype of AZ703, a novel selective imidazo[1,2-a]pyridine cyclin-dependent kinase inhibitor. Mol Cancer Ther 5(3):655–664

    Article  CAS  PubMed  Google Scholar 

  24. Cai D, Byth KF, Shapiro GI (2006) AZ703, an imidazo[1,2-a]pyridine inhibitor of cyclin-dependent kinases 1 and 2, induces E2F-1-dependent apoptosis enhanced by depletion of cyclin-dependent kinase 9. Cancer Res 66(1):435–444

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Jung KH, Jeong Y, Hong S, Hong SS (2013) HS-173, a novel phosphatidylinositol 3-kinase (PI3K) inhibitor, has anti-tumor activity through promoting apoptosis and inhibiting angiogenesis. Cancer Lett 328(1):152–159

    Article  CAS  PubMed  Google Scholar 

  26. Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee S, Zhou ZP, Wang J, Ding HW (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106

    Article  CAS  PubMed  Google Scholar 

  27. Han W, Menezes DL, Xu Y, Knapp MS, Elling R, Burger MT, Ni ZJ, Smith A, Lan J, Williams TE, Verhagen J, Huh K, Merritt H, Chan J, Kaufman S, Voliva CF, Pecchi S (2016) Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3Kinases that are efficacious in a mouse xenograft model. Bioorg Med Chem Lett 26(3):742–746

    Article  CAS  PubMed  Google Scholar 

  28. Xi JB, Fang YF, Frett B, Zhu ML, Zhu T, Kong YN, Guan FJ, Zhao Y, Zhang XW, Li HY, Ma ML, Hu W (2017) Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur J Med Chem 126:1083–1106

    Article  CAS  PubMed  Google Scholar 

  29. Liu TC, Peng X, Ma YC, Ji YC, Chen DQ, Zheng MY, Zhao DM, Cheng MS, Geng MY, Shen JK, Ai J, Xiong B (2016) Discovery of a new series of imidazo[1,2-a] pyridine compounds as selective c-Met inhibitors. Acta Pharmacol Sin 37(5):698–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsumoto S, Miyamoto N, Hirayama T, Oki H, Okada K, Tawada M, Iwata H, Nakamura K, Yamasaki S, Miki H, Hori A, Imamura S (2013) Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a] pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors. Bioorg Med Chem 21(24):7686–7698

    Article  CAS  PubMed  Google Scholar 

  31. Almeida GM, Rafique J, Saba S, Siminski T, Mota NSRS, Filho DW, Braga AL, Pedrosa RC, Ourique F (2018) Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 503(3):1291–1297

    Article  CAS  PubMed  Google Scholar 

  32. Ramya PVS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, Babu BN, Naidu VGM, Kamal A (2018) Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem 143:216–231

    Article  CAS  PubMed  Google Scholar 

  33. Cosimelli B, Laneri S, Ostacolo C, Sacchi A, Severi E, Porcù E, Rampazzo E, Moro E, Basso G, Viola G (2014) Synthesis and biological evaluation of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines as new inhibitors of the Wnt/β-catenin signalling. Eur J Med Chem 83:45–56

    Article  CAS  PubMed  Google Scholar 

  34. Dar AM, Gatoo MA (2015) Synthesis of new steroidal imidazo [1,2-a] pyridines: DNA binding studies, cleavage activity and in vitro cytotoxicity. Steroids 104:163–175

    Article  CAS  PubMed  Google Scholar 

  35. Rassokhina IV, Volkova YA, Kozlov AS, Scherbakov AM, Andreeva OE, Shirinian VZ, Zavarzin IV (2016) Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-a]pyridines. Steroids 113:29–37

    Article  CAS  PubMed  Google Scholar 

  36. Hirayama T, Okaniwa M, Banno H, Kakei H, Ohashi A, Iwai K, Ohori M, Mori K, Gotou M, Kawamoto T, Yokota A, Ishikawa T (2015) Synthetic studies on centromere-associated protein-E (CENP-E) inhibitors: 2. Application of electrostatic potential map (EPM) and structure-based modeling to imidazo[1,2-a]pyridine derivatives as anti-tumor agents. J Med Chem 58(20):8036–8053

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Zuo D, Jing T, Guo M, Xing L, Zhang W, Zhao J, Shen J, Gong P, Zhang D, Zhai X (2017) Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a]pyridine derivatives as potent antitubulin agents. Bioorg Med Chem 25(15):4088–4099

    Article  CAS  PubMed  Google Scholar 

  38. MarieKirwen E, Batra T, Karthikeyan C, Deora GS, Rathore V, Mulakayala C, Mulakayala N, Nusbaum AC, Chen J, Amawi H, McIntosh K, Shivnath N, Chowarsia D, Sharma N, Arshad M, Trivedi P, Tiwari AK (2017) 2,3-Diaryl-3H-imidazo[4,5-b]pyridine derivatives as potential anticancer and anti-inflammatory agents. Acta Pharm Sin B. 7(1):73–79

    Article  Google Scholar 

  39. Dahan-Farkas N, Langley C, Rousseau AL, Yadav D, Davids H, de Koning CB (2011) 6-Substituted imidazo[1,2-a]pyridines: synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur J Med Chem 46:4573–4583

    Article  CAS  PubMed  Google Scholar 

  40. Dam J, Ismail Z, Kurebwa T, Gangat N, Harmse L, Marques HM, Lemmerer AL, Bode ML, de Koning CB (2017) Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur J Med Chem 126:353–368

    Article  CAS  PubMed  Google Scholar 

  41. Otterbein LE, Choi AM (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279:L1029–L1037

    Article  CAS  PubMed  Google Scholar 

  42. Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  CAS  PubMed  Google Scholar 

  43. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 80:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lombaert N, Castrucci E, Decordier I, Van Hummelen P, Kirsch-Volders M, Cundari E, Lison D (2013) Hard-metal (WC–Co) particles trigger a signalling cascade involving p38 MAPK, HIF-1a, HMOX1, and p53 activation in human PBMC. Arch Toxicol 87:259–268

    Article  CAS  PubMed  Google Scholar 

  45. Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M (2016) The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016:1958174

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS ONE 12(5):e0177549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 108(4):1433–1438

    Article  PubMed  PubMed Central  Google Scholar 

  48. Busserolles J, Megias J, Terencio MC, Alcaraz MJ (2006) Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. Int J Biochem Cell Biol 38:1510–1517

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee P, Basu A, Wegiel B, Otterbein LE, Mizumura K, Gasser M et al (2012) Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis and autophagy-regulating molecules. J Biol Chem 287:32113–32123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism: targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22

    Article  CAS  PubMed  Google Scholar 

  51. Podkalicka P, Mucha O, Józkowicz A, Dulak J, Agnieszka Łoboda A (2018) Heme oxygenase inhibition in cancers: possible tools and targets. Contemp Oncol (Pozn) 22:23–32

    Google Scholar 

  52. Cerny-Reiterer S, Meyer R, Herrmann H, Peter B, Gleixner K, Stefanzl G et al (2014) Identification of heat shock protein 32 (Hsp32) as a novel target in acute lymphoblastic leukemia. Oncotarget 5(5):1198–1211

    Article  PubMed  PubMed Central  Google Scholar 

  53. Was H, Dulak J, Jozkowicz A (2010) Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets 11:1551–1570

    Article  CAS  PubMed  Google Scholar 

  54. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18(9):E1978

    Article  CAS  PubMed  Google Scholar 

  55. Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F et al (2011) Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res 9:577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B (2008) Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27:3371–3383

    Article  CAS  PubMed  Google Scholar 

  57. Lee SY, Jo HJ, Kim KM, Song JD, Chung HT, Park YC (2008) Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line. Biochem Biophys Res Commun 365:870–874

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M et al (2013) Epigenentic and epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2:e71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Lozano G (2017) p53: multiple facets of a Rubik’s cube. Annu Rev Cancer Biol. 1:185–201

    Article  PubMed  Google Scholar 

  60. Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W (2017) Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol 429:1595–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon SH, Rodriguez-Barrueco R et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26:199–212

    Article  PubMed  Google Scholar 

  63. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA, Van Pelt CS, Lozano G (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schumacher U, Adam E, Feldhaus S, Katoh M, Lane DP (2001) Cell differentiation and chemotherapy influence p53 and Mdm2 immunoreactivity in human HT29 colon cancer cells grown in Scid mice. Cancer Lett 166(2):215–221

    Article  CAS  PubMed  Google Scholar 

  65. Muller PAJ, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blanden AR, Yu X, Loh SN, Levine AJ, Carpizo DR (2015) Reactivating mutant p53 using small molecules as zinc metallochaperones-awakening a sleeping giant in cancer. Drug Discov Today 20(11):1391–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Izetti P, Hautefeuille A, Abujamra AL, De Farias CB, Giacomazzi J, Alemar B et al (2014) PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemo-therapeutic cytotoxicity in pancreatic cancer cell lines. Invest New Drugs 32(5):783–794

    Article  CAS  PubMed  Google Scholar 

  68. Lehmann SS, Bykov VJN, Ali D, Andre’n O, Cherif H, Tidefelt U et al (2012) Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30:3633–3639

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J (2018) APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 9:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Levine AJ, Hu W, Feng Z (2006) The p53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  CAS  PubMed  Google Scholar 

  71. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  72. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Melnikova VO, Santamaria AB, Bolshakov SV, Ananthaswamy HN (2003) Mutant p53 is constitutively phosphorylated at serine 15 in UV-induced mouse skin tumors: involvement of ERK1/2 MAP kinase. Oncogene 22:5958–5966

    Article  CAS  PubMed  Google Scholar 

  74. Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS ONE 6(3):e17574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bar JK, Slomska I, Rabczynki J, Noga L, Grybos M (2009) Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms: correlation with clinicopathological parameters of tumors. Int J Gynecol Cancer. 19:1322–1328

    Article  PubMed  Google Scholar 

  76. Furihata M, Kurabayashl A, Matsumoto M, Sonobe H, Ohtsuki Y, Terao N et al (2002) Frequent phosphorylation at serine 392 in overexpressed p53 protein due to missense mutation in carcinoma of the urinary tract. J. Pathol. 197:82–88

    Article  CAS  PubMed  Google Scholar 

  77. Bagashev A, Fan S, Mukerjee R, Claudio PP, Chabrashvili T, Leng RP et al (2013) Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 12:1569–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  80. Fulda S (2009) Inhibitor of apoptosis (IAP) proteins: novel insights into the cancer-relevant targets for cell death induction. ACS Chem Biol 4:499–501

    Article  CAS  PubMed  Google Scholar 

  81. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Finlay D, Vamos M, González-López M, Ardecky RJ, Ganji SR, Yuan H et al (2014) Small-molecule IAP antagonists sensitize cancer cells to TRAIL-induced apoptosis: roles of XIAP and cIAPs. Mol Cancer Ther 13:5–15

    Article  CAS  PubMed  Google Scholar 

  83. Fulda S (2014) Molecular pathways: targeting inhibitor of apoptosis proteins in cancer-from molecular mechanism to therapeutic application. Clin Cancer Res 20:289–295

    Article  CAS  PubMed  Google Scholar 

  84. Guicciardi ME, Werneburg NW, Bronk SF, Franke A, Yagita H, Thomas G, Gores GJ (2014) Cellular inhibitor of apoptosis (cIAP)-mediated ubiquitination of phosphofurin acidic cluster sorting protein 2 (PACS-2) negatively regulates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity. PLoS ONE 9(3):e92124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J Biol Chem 283:24295–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G et al (2001) Nuclear factor-κB is upregulated in colorectal cancer. Surgery 130:363–369

    Article  CAS  PubMed  Google Scholar 

  87. Park MH, Hong JT (2016) Roles of NF-ĸB in cancer and inflammatory diseases and their therapeutic approaches. Cells 5:15.

    Article  CAS  PubMed Central  Google Scholar 

  88. Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang H, Schimmer AD (2007) Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther 6:24–30

    Article  CAS  PubMed  Google Scholar 

  90. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  CAS  PubMed  Google Scholar 

  91. Ge Y, Cao X, Wang D, Sun W, Sun H, Han B, Cui J, Liu B (2016) Overexpression of Livin promotes migration and invasion of colorectal cancer cells by induction of epithelial–mesenchymal transition via NF-ĸB activation. OncoTargets Therapy 9:1011–1021

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boidot R, Végran F, Lizard-Nacol S (2014) Transcriptional regulation of the survivin gene. Mol Biol Rep 41:233–240

    Article  CAS  PubMed  Google Scholar 

  93. Eckhardt I, Roesler S, Fulda S (2013) Identification of DR5 as a critical, NF-κB-regulated mediator of Smac-induced apoptosis. Cell Death Dis 4:e936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621

    Article  CAS  PubMed  Google Scholar 

  95. Goo HG, Jung MK, Han SS, Rhim H, Kang S (2013) HtrA2/Omi deficiency causes damage and mutation of mitochondrial DNA. Biochim Biophys Acta 1833(8):1866–1875

    Article  CAS  PubMed  Google Scholar 

  96. Gmeiner WH, Boyacioglu O, Stuart CH, Jennings-Gee J, Balaji KC (2015) The cytotoxic and pro-apoptotic activities of the novel fluoropyrimidine F10 towards prostate cancer cells are enhanced by Zn(2 +) -chelation and inhibiting the serine protease Omi/HtrA2. Prostate 75:360–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Blue Skies Initiative of the National Research Foundation, Pretoria (South Africa), the Southern African Biochemistry and Informatics for Natural Products Network (SABINA) and the University of the Witwatersrand (Science Faculty Research and Health Sciences Faculty Research Councils) as well as the McGill bequest to the Pharmacology Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie Harmse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmse, L., Gangat, N., Martins-Furness, C. et al. Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 24, 623–643 (2019). https://doi.org/10.1007/s10495-019-01547-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01547-7

Keywords

Navigation