Skip to main content

Advertisement

Log in

Endothelin-1-mediated cerebral ischemia in mice: early cellular events and the role of caspase-3

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Over the past 30 years a number of animal models of cerebral ischemic injury have been developed. Middle cerebral artery occlusion (MCAO) in particular reproduces both ischemic and reperfusion elements and is widely utilized as a model of ischemic stroke in rodents. However substantial variability exists in this model even in clonal inbred mice due to stochastic elements of the cerebral vasculature. Models such as MCAO thus exhibit significant irreducible variabilities with respect to their zone of injury as well as inducing a sizable volume of injury to the cerebrum with damage to sub-cortical structures, conditions not typically seen for the majority of human clinical strokes. An alternative model utilizes endothelin-1 application focally to cerebral vasculature, resulting in an ischemic reperfusion injury which more closely mimics that seen in human clinical stroke. In order to further define this model we demonstrate that intra-cortical administration of ET-1 results in a highly reproducible pattern of tissue injury which is limited to the cerebral cortex, characterizing the early cellular and molecular events which occur during the first 24 h post-injury. In addition we demonstrate that caspase-3 is both necessary and sufficient to regulate a majority of cortical cell death observed during this period. The enhanced survival effects seen upon genetic deletion of caspase-3 appear to arise as a result of direct modification of cell autonomous PCD signaling as opposed to secondary effectors such as granulocyte infiltration or microglia activation. Taken together these findings detail the early mechanistic features regulating endothelin-1-mediated ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization (2004) Global burden of stroke. http://www.who.int/cardiovascular_diseases/en/cvd_atlas_15_burden_stroke.pdf. Accessed 4 May 4 2016

  2. Simonetti G, Stefanini M, Konda D, Marziali S, Da Ros V, Chiaravalloti A, Pampana E, Gandini R (2013) Endovascular management of acute stroke. J Cardiovasc Surg 54(1):101–114

    CAS  Google Scholar 

  3. Albers GW, Goyal M, Jahan R, Bonafe A, Diener HC, Levy EI, Pereira VM, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, de Rochemont RduM, Singer OC, Bammer R, Saver JL (2016) Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol 79(1):76–89

    Article  PubMed  Google Scholar 

  4. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14(4):469–477

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  CAS  PubMed  Google Scholar 

  6. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17(20):2481–2495

    Article  CAS  PubMed  Google Scholar 

  7. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  8. Cain K, Bratton SB, Cohen GM (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84(2–3):203–214

    Article  CAS  PubMed  Google Scholar 

  9. Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Differ 16(7):935–938

    Article  CAS  PubMed  Google Scholar 

  10. Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donepudi M, Grutter MG (2002) Structure and zymogen activation of caspases. Biophys Chem 101–102:145–153

    Article  PubMed  Google Scholar 

  12. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391(6662):96–99

    Article  CAS  PubMed  Google Scholar 

  13. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138(5):838–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chay KO, Park SS, Mushinski JF (2002) Linkage of caspase-mediated degradation of paxillin to apoptosis in Ba/F3 murine pro-B lymphocytes. J Biol Chem 277(17):14521–14529

    Article  CAS  PubMed  Google Scholar 

  15. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40(8):2945–2948

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ford GA (2008) Clinical pharmacological issues in the development of acute stroke therapies. Br J Pharmacol 153(Suppl 1):S112–S119

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40(3 Suppl):S111–S114

    Article  PubMed  Google Scholar 

  18. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1(1):36–45

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731

    Article  CAS  PubMed  Google Scholar 

  20. Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2(3):396–409

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bacigaluppi M, Comi G, Hermann DM (2010) Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J 4:34–38

    PubMed  PubMed Central  Google Scholar 

  22. Dulli D, D’Alessio DJ, Palta M, Levine RL, Schutta HS (1998) Differentiation of acute cortical and subcortical ischemic stroke by risk factors and clinical examination findings. Neuroepidemiology 17(2):80–89

    Article  CAS  PubMed  Google Scholar 

  23. Pulli B, Schaefer PW, Hakimelahi R, Chaudhry ZA, Lev MH, Hirsch JA, Gonzalez RG, Yoo AJ (2012) Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 262(2):593–604

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ghanavati S, Lerch JP, Sled JG (2014) Automatic anatomical labeling of the complete cerebral vasculature in mouse models. Neuroimage 95:117–128

    Article  PubMed  Google Scholar 

  25. Macrae IM (2011) Preclinical stroke research–advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164(4):1062–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sapira V, Cojocaru IM, Lilios G, Grigorian M, Cojocaru M (2010) Study of endothelin-1 in acute ischemic stroke. Rom J Intern Med 48(4):329–332

    CAS  PubMed  Google Scholar 

  27. Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J (1993) Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab 13(2):276–284

    Article  CAS  PubMed  Google Scholar 

  28. Soylu H, Zhang D, Buist R, Martin M, Albensi BC, Parkinson FE (2012) Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter. Exp Transl Stroke Med 4(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuxe K, Kurosawa N, Cintra A, Hallstrom A, Goiny M, Rosen L, Agnati LF, Ungerstedt U (1992) Involvement of local ischemia in endothelin-1 induced lesions of the neostriatum of the anaesthetized rat. Exp Brain Res 88(1):131–139

    Article  CAS  PubMed  Google Scholar 

  30. Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D (2006) An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 201(2):324–334

    Article  CAS  PubMed  Google Scholar 

  31. Gilmour G, Iversen SD, O’Neill MF, Bannerman DM (2004) The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150(1–2):171–183

    Article  CAS  PubMed  Google Scholar 

  32. Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM, Steinberg GK (2008) Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods 173(2):286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roome RB, Bartlett RF, Jeffers M, Xiong J, Corbett D, Vanderluit JL (2014) A reproducible Endothelin-1 model of forelimb motor cortex stroke in the mouse. J Neurosci Methods 233:34–44

    Article  CAS  PubMed  Google Scholar 

  34. Tennant KA, Jones TA (2009) Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice. J Neurosci Methods 181(1):18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12(6):806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan E, Kovacevic N, Ho SK, Henkelman RM, Henderson JT (2007) Development of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6 J using magnetic resonance imaging and micro-computed tomography. Neuroscience 144(2):604–615

    Article  CAS  PubMed  Google Scholar 

  37. Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, Yang Z, Xu T, Yang X, Li X, Jiang T, Luo Q, Gong H (2017) Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front Neuroanat 11:128

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CY, Quan Y, Liu B, Pei L, Sun CL, Deurloo M, Feng ZP (2015) Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 263:161–171

    Article  CAS  PubMed  Google Scholar 

  39. Alibrahim A, Zhao LY, Bae CY, Barszczyk A, Sun CL, Wang GL, Sun HS (2013) Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury. Acta Pharmacol Sin 34(1):113–118

    Article  CAS  PubMed  Google Scholar 

  40. Sakai R, Henderson JT, O’Bryan JP, Elia AJ, Saxton TM, Pawson T (2000) The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 28(3):819–833

    Article  CAS  PubMed  Google Scholar 

  41. Back T, Otto D, Kittner D, Schuler OG, Hennerici MG, Mennel HD (2007) Failure to improve the effect of thrombolysis by memantine in a rat embolic stroke model. Neurol Res 29(3):264–269

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Jin K, Greenberg DA (2007) Neurogenesis associated with endothelin-induced cortical infarction in the mouse. Brain Res 1167:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tschirgi RD (1950) Protein complexes and the impermeability of the blood-brain barrier to dyes. Am J Physiol 163:756

    Google Scholar 

  44. Reynolds DS, Morton AJ (1998) Changes in blood-brain barrier permeability following neurotoxic lesions of rat brain can be visualised with trypan blue. J Neurosci Methods 79(1):115–121

    Article  CAS  PubMed  Google Scholar 

  45. Windle WF, Rhines R, Rankin J (1943) A Nissl method using buffered solutions of thionin. Stain Technol 18(2):77–86

    Article  Google Scholar 

  46. Garcia-Cabezas MA, John YJ, Barbas H, Zikopoulos B (2016) Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat 10:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Popp A, Jaenisch N, Witte OW, Frahm C (2009) Identification of ischemic regions in a rat model of stroke. PLoS ONE 4(3):e4764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sibatani A (1952) Differential staining of nucleic acids II. Cytologia 16(4):325–334

    Article  Google Scholar 

  49. Ooigawa H, Nawashiro H, Fukui S, Otani N, Osumi A, Toyooka T, Shima K (2006) The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate. Acta Neuropathol 112(4):471–481

    Article  CAS  PubMed  Google Scholar 

  50. Ishida K, Shimizu H, Hida H, Urakawa S, Ida K, Nishino H (2004) Argyrophilic dark neurons represent various states of neuronal damage in brain insults: some come to die and others survive. Neuroscience 125(3):633–644

    Article  CAS  PubMed  Google Scholar 

  51. Benedek A, Móricz K, Jurányi Z, Gigler G, Lévay G, Hársing LG, Mátyus P, Szénási G, Albert M (2006) Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res 1116(1):159–165

    Article  CAS  PubMed  Google Scholar 

  52. Goldlust EJ, Paczynski RP, He YY, Hsu CY, Goldberg MP (1996) Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke 27(9):1657–1662

    Article  CAS  PubMed  Google Scholar 

  53. Symon L (1987) Recovery of brain function after ischaemia. Acta Neurochir Suppl 41:97–103

    Article  CAS  PubMed  Google Scholar 

  54. Heiss WD (2010) The concept of the penumbra: can it be translated to stroke management? Int J Stroke 5(4):290–295

    Article  PubMed  Google Scholar 

  55. Meng X, Fisher M, Shen Q, Sotak CH, Duong TQ (2004) Characterizing the diffusion/perfusion mismatch in experimental focal cerebral ischemia. Ann Neurol 55(2):207–212

    Article  PubMed  PubMed Central  Google Scholar 

  56. McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM (2009) Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke 40(12):3864–3868

    Article  PubMed  PubMed Central  Google Scholar 

  57. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14(2):215–222

    Article  PubMed  Google Scholar 

  58. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17(10):927–938

    Article  CAS  PubMed  Google Scholar 

  59. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272(15):9677–9682

    Article  CAS  PubMed  Google Scholar 

  60. Poreba M, Strozyk A, Salvesen GS, Drag M (2013) Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5(8):a008680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29):17907–17911

    Article  CAS  PubMed  Google Scholar 

  62. Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W (1994) Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174(1–2):5–19

    Article  CAS  PubMed  Google Scholar 

  63. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  64. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227

    Article  CAS  PubMed  Google Scholar 

  65. Greter M, Lelios I, Croxford AL (2015) Microglia versus myeloid cell nomenclature during brain inflammation. Front Immunol 6:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jeong H-K, Ji K, Min K, Joe E-H (2013) Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol 22(2):59–67

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vanni MP, Chan AW, Balbi M, Silasi G, Murphy TH (2017) Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J Neurosci 37(31):7513–7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Kyle Gill and Ryan Harrietha for genotyping assistance; Zoe Winterton-Perks for assistance with histology; Zhihua Huang and Lida Du for assistance with TTC staining; and Ali Darbandi and Doug Holmyard for electron microscopy assistance.

Funding

This study has been funded by grants awarded to J.H. from Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 298553-12) and Heart and Stroke Society of Canada (72043506). C.D.S. additionally received scholarship funding from Natural Sciences and Engineering Research Council of Canada (NSERC) and Queen Elizabeth II Graduate Scholarships in Science & Technology- Merck Company of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Henderson.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The experiments performed in this study comply with ethical requirements and laws as discussed above.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dojo Soeandy, C., Salmasi, F., Latif, M. et al. Endothelin-1-mediated cerebral ischemia in mice: early cellular events and the role of caspase-3. Apoptosis 24, 578–595 (2019). https://doi.org/10.1007/s10495-019-01541-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01541-z

Keywords

Navigation