Skip to main content
Log in

A triazole-conjugated benzoxazone induces reactive oxygen species and promotes autophagic apoptosis in human lung cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Numerous approaches suggested that compounds with conjugated triazole moieties or benzoxazone pharmacores are effective to antagonize proliferation of human tumors. The current study reported that a synthetic triazole-conjugated benzoxazone, 4-((5-benzyl-1H-1,2,3-triazol-3-yl)-methyl)-7-methoxy-2H-benzo[b][1,4]-oxazin-3(4H)-one (BTO), inhibited growth rates of human non-small cell lung cancer cells. The cytotoxicity can be enhanced with increasing drug concentrations. More evidence supported that the induced reactive oxygen species lead to ultimate apoptotic cell death by recruiting autophagy. The mechanistic pathway as elucidated involved tumor suppressor p53 activation and LC3-1 conversion followed by PARP and procaspase-3 cleavage. Autophagy inhibition reverted apoptotic death and restored cell viabilities. BTO suppressed the development of A549 cell xenograft tumors by activating autophagy and apoptosis simultaneously. As an efficient tumor growth inhibitor with relatively small molecular weight, BTO is a viable addition to the existing list of lung cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Bax:

B-cell lymphoma-2-associated X-protein

BTO:

4-((5-Benzyl-1H-1,2,3-triazol-3-yl)-methyl)-7-methoxy-2H-benzo[b][1,4]-oxazin-3(4H)-one

DAPI:

4′,6-Diamidino-2-phenylindole

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFP:

Green fluorescence protein

HE:

Hematoxylin and eosin

HRP:

Horseradish peroxidase

LC3:

Microtubule-associated protein light chain 3

3-MA:

3-Methyladenine

MTT:

3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazoliumbromide

NAC:

N-Acetylcysteine

NSCLC:

Non-small-cell lung carcinomas

PARP:

Poly(adenosine diphosphate ribose) polymerase

PBS:

Phosphate-buffered saline

PCNA:

Proliferating cell nuclear antigen

PI:

Propidium iodide

PI3K:

Phosphoinositide 3-kinase

ROS:

Reactive oxygen species

SD:

Standard deviation

TRITC:

Tetramethylrhodamine isocyanate

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Neal RD, Hamilton W, Rogers TK (2014) Lung cancer. BMJ 349. https://doi.org/10.1136/bmj.g6560

    PubMed  Google Scholar 

  3. de Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34(8):737–749. http://doi.org/10.1016/j.ctrv.2008.07.001

    Article  PubMed  Google Scholar 

  4. Reddy DM, Srinivas J, Chashoo G, Saxena AK, Sampath Kumar HM (2011) 4β-[(4-alkyl)-1,2,3-triazol-1-yl] podophyllotoxins as anticancer compounds: design, synthesis and biological evaluation. Eur J Med Chem 46(6):1983–1991. https://doi.org/10.1016/j.ejmech.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Mao L, Hong G, Yang X, Liu T (2015) Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates. Bioorg Med Chem Lett 25(12):2540–2544. https://doi.org/10.1016/j.bmcl.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  6. Odlo K, Hentzen J, dit Chabert JF, Ducki S, Gani OABSM., Sylte I, Skrede M, Flørenes VA, Hansen TV (2008) 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg Med Chem Lett 16(9):4829–4838. https://doi.org/10.1016/j.bmc.2008.03.049

    Article  CAS  Google Scholar 

  7. Borate HB, Maujan SR, Sawargave SP, Chandavarkar MA, Vaiude SR, Joshi VA, Wakharkar RD, Iyer R, Kelkar RG, Chavan SP, Kunte SS (2010) Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-candida agents. Bioorg Med Chem Lett 20(2):722–725. https://doi.org/10.1016/j.bmcl.2009.11.071

    Article  CAS  PubMed  Google Scholar 

  8. Fringuelli R, Giacchè N, Milanese L, Cenci E, Macchiarulo A, Vecchiarelli A, Costantino G, Schiaffella F (2009) Bulky 1,4-benzoxazine derivatives with antifungal activity. Bioorg Med Chem Lett 17(11):3838–3846. https://doi.org/10.1016/j.bmc.2009.04.051

    Article  CAS  Google Scholar 

  9. Su CL, Tseng CL, Ramesh C, Liu HS, Huang CF, Yao CF (2017) Using gene expression database to uncover biology functions of 1,4-disubstituted 1,2,3-triazole analogues synthesized via a copper(I)-catalyzed reaction. Eur J Med Chem 132:90–107. https://doi.org/10.1016/j.ejmech.2017.03.034

    Article  CAS  PubMed  Google Scholar 

  10. Liu CY, Wu PT, Wang JP, Fan PW, Hsieh CH, Su CL, Chiu CC, Yao CF, Fang K (2015) An indolylquinoline derivative promotes apoptosis in human lung cancer cells by impairing mitochondrial functions. Apoptosis 20(11):1471–1482. https://doi.org/10.1007/s10495-015-1165-6

    Article  CAS  PubMed  Google Scholar 

  11. Ding Y, Nguyen TA (2013) PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9. Apoptosis 18(9):1071–1082. https://doi.org/10.1007/s10495-013-0855-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation: why mitochondria are targets for cancer therapy. Mol Asp Med 31(2):145–170. https://doi.org/10.1016/j.mam.2010.02.008

    Article  CAS  Google Scholar 

  13. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC (2017) Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 18(2):367. https://doi.org/10.3390/ijms18020367

    Article  PubMed Central  Google Scholar 

  14. Hong S-O, Choi IK, Jeong W, Lee SR, Sung HJ, Hong SS, Seo JH (2017) Ulmus davidiana Nakai induces apoptosis and autophagy on non-small cell lung cancer cells. J Ethnopharmacol 202:1–11. https://doi.org/10.1016/j.jep.2017.03.009

    Article  PubMed  Google Scholar 

  15. Burris HA 3rd (2009) Shortcomings of current therapies for non-small-cell lung cancer: unmet medical needs. Oncogene 1(28 Suppl):S4–13. https://doi.org/10.1038/onc.2009.196

    Article  Google Scholar 

  16. Chang A (2011) Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71(1):3–10. https://doi.org/10.1016/j.lungcan.2010.08.022

    Article  PubMed  Google Scholar 

  17. Bollu R, Palem JD, Bantu R, Guguloth V, Nagarapu L, Polepalli S, Jain N (2015) Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur J Med Chem 89:138–146. https://doi.org/10.1016/j.ejmech.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  18. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(19):1845–1846. https://doi.org/10.1056/NEJMc1303158

    Article  CAS  PubMed  Google Scholar 

  19. Dielschneider RF, Henson ES, Gibson SB (2017) Lysosomes as oxidative targets for cancer therapy. Oxid Med Cell Longev 2017:3749157. https://doi.org/10.1155/2017/3749157

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5(11):e1509. https://doi.org/10.1038/cddis.2014.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC (2017) Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 18(2):367. https://doi.org/10.3390/ijms18020367

    Article  PubMed Central  Google Scholar 

  22. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen E-L, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/JCI20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strohecker AM, White E (2014) Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10(2):384–385. https://doi.org/10.4161/auto.27320

    Article  CAS  PubMed  Google Scholar 

  24. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8 (9):741–752. http://www.nature.com/nrm/journal/v8/n9/suppinfo/nrm2239_S1.html

  26. Liu F, Liu D, Yang Y, Zhao S (2013) Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett 5(4):1261–1265. https://doi.org/10.3892/ol.2013.1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518. https://doi.org/10.1016/j.biocel.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Luo S, Rubinsztein DC (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17(2):268–277. https://doi.org/10.1038/cdd.2009.121

    Article  CAS  PubMed  Google Scholar 

  29. Schumacker PT Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10 (3):175–176. https://doi.org/10.1016/j.ccr.2006.08.015

  30. Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21(1):86–102. https://doi.org/10.1089/ars.2013.5746

    Article  CAS  PubMed  Google Scholar 

  31. Chang C-T, Hseu Y-C, Thiyagarajan V, Lin K-Y, Way T-D, Korivi M, Liao J-W, Yang H-L (2017) Chalcone flavokawain B induces autophagic-cell death via reactive oxygen species-mediated signaling pathways in human gastric carcinoma and suppresses tumor growth in nude mice. Arch Toxicol. 91(10):3341–3364. https://doi.org/10.1007/s00204-017-1967-0

    Article  CAS  PubMed  Google Scholar 

  32. Jin CY, Yu HY, Park C, Han MH, Hong SH, Kim KS, Lee YC, Chang YC, Cheong J, Moon SK, Kim GY, Moon HI, Kim WJ, Lee JH, Choi YH (2013) Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells. Int J Oncol 43(6):1943–1950. https://doi.org/10.3892/ijo.2013.2143

    Article  CAS  PubMed  Google Scholar 

  33. Wang K (2015) Autophagy and apoptosis in liver injury. Cell Cycle 14(11):1631–1642. https://doi.org/10.1080/15384101.2015.1038685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma G, Luo W, Lu J, Ma DL, Leung CH, Wang Y, Chen X (2016) Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 253:1–9. https://doi.org/10.1016/j.cbi.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  35. Kulkarni YM, Kaushik V, Azad N, Wright C, Rojanasakul Y, O’Doherty G, Iyer AK (2016) Autophagy-Induced apoptosis in lung cancer cells by a novel digitoxin analog. J Cell Physiol 231(4):817–828. https://doi.org/10.1002/jcp.25129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P (2010) Caspase-mediated cleavage of beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1(1):e18. https://doi.org/10.1038/cddis.2009.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baburajeev CP, Mohan CD, Rangappa S, Mason DJ, Fuchs JE, Bender A, Barash U, Vlodavsky I, Basappa, Rangappa KS (2017) Identification of novel class of triazolo-thiadiazoles as potent inhibitors of human heparanase and their anticancer activity. BMC Cancer 17(1):235. https://doi:10.1186/s12885-017-3214-8

Download references

Acknowledgements

The construct GFP-LC3 was kindly provided by professor Huang Wei-Bang, Department of Life Science, National Taiwan University, Taipei, Taiwan. The work is supported by grants from National Taiwan Normal University (106T3040B2, 106T3040C2 and 106T3040D2). Technical assistance of College of Life Science and Instrumentation Center, National Taiwan Normal University with the confocal laser microscopy is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Fang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Scheme of BTO synthesis (JPG 49 KB)

Experimental protocols of BTO synthesis (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, CH., Wang, JP., Chiu, CC. et al. A triazole-conjugated benzoxazone induces reactive oxygen species and promotes autophagic apoptosis in human lung cancer cells. Apoptosis 23, 1–15 (2018). https://doi.org/10.1007/s10495-017-1432-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1432-9

Keywords

Navigation