Skip to main content
Log in

Mille modis morimur: We die in a thousand ways

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Dying cells subjected to apoptotic programs are engulfed by neighboring cells or by professional phagocytes, without inflammation or immunological reactions in the tissue where apoptosis takes place. Apoptotic cells release danger-associated project signals to their neighbours, through different molecular patterns, stimulate antigen production and immune responses. Microenvironmental effects with several functional consequences indicate that cell death is a complex process and may take place in several ways. This idea is expressed by the title of the Special Issue and by the title of the guest editorial “Mille modis morimur” meaning that not only multicellular organisms, but also single cells may die in a thousand ways. This idea is demonstrated by the papers serving as examples for cell death. Apoptosis was induced by clary sage oil in Candida cells. Heavy metal (Gd) induced cell motility and apoptosis was found in mammalian cells. RNA oxidation enhanced the reversion frequency of apoptosis in yeast mutants. The frequency of apoptotic micronucleus formation increased in a concentration-dependent manner by methotrexate. The antioxidant coenzyme Q10 protected renal proximal tubule cells against nicotine-induced apoptosis. The synergy of 2-deoxy-d-glucose combined with berberine induced lysosome/autophagy. The mitochondrial apoptotic pathway could be regulated by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Cylindrospermopsin induced biochemical changes led to apoptosis in plants. Mechanisms of stress seriously impacted the risk of apoptosis. Transcriptional control of apoptotic cell clearance was achieved by macrophage nuclear receptors. Finally, the clinical aspects of apoptosis-induced lymphopenia were reviewed in sepsis and other severe injuries. These examples not only support the view of many ways of cell death, but predict further potential ways to induce or reduce the risk of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135. doi:10.1371/journal.pgen.0020135

    Article  PubMed  PubMed Central  Google Scholar 

  2. Douglas RG (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Article  CAS  PubMed  Google Scholar 

  4. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    Article  CAS  Google Scholar 

  5. Bursch W (2001) The autophagosomal lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  CAS  PubMed  Google Scholar 

  6. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  Google Scholar 

  7. Kierszenbaum A (2012) Histology and cell biology: an introduction to pathology. Elsevier Saunders, Philadelphia

    Google Scholar 

  8. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  CAS  PubMed  Google Scholar 

  10. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B III, Stockwell BR (2012) Ferroptosis: an iron-dependent form of non-apoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Xu X, Liu Y (2004) Activation-induced cell death in T cells and autoimmunity. Cell Mol Immunol 1:186–192

    PubMed  Google Scholar 

  13. Melino G (2001) The Sirens’ song. Nature 412:423

    Article  Google Scholar 

  14. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12(Suppl 2):1463–1467

    Article  CAS  PubMed  Google Scholar 

  15. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

  16. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  17. Ridley M (2003) Genes, experience, and what makes us human. In: Nature via nurture. Harper Collins Publishers Inc, New York

    Google Scholar 

  18. Rutter M (2006) Genes and behavior: nature-nurture interplay explained, vol V. Blackwell Publishers, Oxford, p 280

    Google Scholar 

  19. Cuhna F, Heckman JJ (2010) Investing in our young people. In: Reynolds AJ, Rolnick A, Englund MM, Temple J (eds) Cost-effective early childhood programs in the first decade: a human capital integration. Cambridge University Press, New York, p 381–414

    Google Scholar 

  20. Bröker LE, Kruyt FA, Giaccone G (2005) Cell death independent caspases: a review. Clin Cancer Res 11:3155–3162

    Article  PubMed  Google Scholar 

  21. Kerr J (1965) A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol 90:419–435

    Article  CAS  PubMed  Google Scholar 

  22. Kerr JF, Willie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  24. Rathmell JC, Thompson CB (1999) The central effectors of cell death in the immune system. Annu Rev Immunol 17:781–828

    Article  CAS  PubMed  Google Scholar 

  25. Ginaldi L, De Martinis M, Monti D, Franceschi C (2005) Chronic antigenic load and apoptosis in immunofluorescence. Trend Immunol 26:79–84

    Article  CAS  Google Scholar 

  26. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG (2006) Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  CAS  PubMed  Google Scholar 

  27. Banfalvi G (2014) Apoptotic agents inducing genotoxicity-specific chromatin changes. Apoptosis 19:1301–1316

    Article  CAS  PubMed  Google Scholar 

  28. Marton A, Mihalik R, Bratincsak A, Adleff V, Peták I, Vegh M, Bauer PI, Krajcsi P (1997) Apoptotic cell death induced by inhibitors of energy conservation–Bcl-2 inhibits apoptosis downstream of a fall of ATP level. Eur J Biochem 250:467–475

    Article  CAS  PubMed  Google Scholar 

  29. Lebiedzińska M, Suski J, Duszyński J, Wieckowski MR (2010) Role of the p66Shc protein in physiological state and in pathologies. Postepy Biochem 56:165–173

    PubMed  Google Scholar 

  30. Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444

    Article  CAS  PubMed  Google Scholar 

  31. Penberthy KK, Ravichandran KS (2016) Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 269:44–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding was provided by OTKA (Grant No. T 42762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banfalvi, G. Mille modis morimur: We die in a thousand ways. Apoptosis 22, 169–174 (2017). https://doi.org/10.1007/s10495-016-1328-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1328-0

Keywords

Navigation