Skip to main content
Log in

NEDD4-1 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis via the PI3K/Akt pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Activation of the Akt pathway has been shown to protect the heart from ischaemia/reperfusion (I/R) injury. NEDD4-1 has been shown to positively regulate nuclear trafficking of the activated form of Akt. However, the role of NEDD4-1 in cardiac I/R injury remains to be elucidated. In the present study, Lentiviral vectors were constructed to overexpress or knockdown NEDD4-1 in H9c2 cardiomyocytes subjected to I/R injury or ischemic preconditioning (IPC). The results indicated that NEDD4-1 levels were decreased after I/R and increased after IPC in rat heart tissue and in H9c2 cardiomyocytes. Overexpression of NEDD4-1 activated the Akt pathway and regulated apoptosis-related proteins in H9c2 cardiomyocytes, attenuating SI/R-induced cell apoptosis and caspase 3/7 activities. Furthermore, in vivo overexpression of NEDD4-1 attenuated myocardial apoptosis following myocardial I/R. Our results demonstrated that NEDD4-1 protects the myocardium from I/R induced apoptosis by activating PI3K/Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

IGF:

Insulin-like growth factor

IPC:

Ischemic preconditioning

I/R:

Ischaemia/reperfusion

LCA:

Left coronary artery

LDH:

Lactate dehydrogenase

NEDD4-1:

Neural precursor cell expressed developmentally down-regulated 4-1

PI:

Propidium iodide

PI3K:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homolog

TUNEL:

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling

References

  1. Xiong J, Xue FS, Yuan YJ, Wang Q, Liao X, Wang WL (2010) Cholinergic anti-inflammatory pathway: a possible approach to protect against myocardial ischemia reperfusion injury. Chin Med J (Engl) 123:2720–2726

    CAS  Google Scholar 

  2. Hill JH, Ward PA (1971) The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133:885–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinckard RN, Olson MS, Giclas PC, Terry R, Boyer JT, O’Rourke RA (1975) Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction. J Clin Invest 56:740–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossen RD, Michael LH, Hawkins HK, Youker K, Dreyer WJ, Baughn RE et al (1994) Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ Res 75:546–555

    Article  CAS  PubMed  Google Scholar 

  5. Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL (1998) Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 97:2259–2267

    Article  CAS  PubMed  Google Scholar 

  6. Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL (1998) Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion. Circ Res 82:1224–1230

    Article  CAS  PubMed  Google Scholar 

  7. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54:277–285

    Article  CAS  PubMed  Google Scholar 

  8. Sack MN, Smith RM, Opie LH (2000) Tumor necrosis factor in myocardial hypertrophy and ischaemia–an anti-apoptotic perspective. Cardiovasc Res 45:688–695

    Article  CAS  PubMed  Google Scholar 

  9. Belosjorow S, Schulz R, Dorge H, Schade FU, Heusch G (1999) Endotoxin and ischemic preconditioning: TNF-alpha concentration and myocardial infarct development in rabbits. Am J Physiol 277:H2470–H2475

    CAS  PubMed  Google Scholar 

  10. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112:682–690

    Article  CAS  PubMed  Google Scholar 

  11. Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 min of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–1827

    Article  CAS  PubMed  Google Scholar 

  12. Richard V, Murry CE, Reimer KA (1995) Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation 92:1891–1901

    Article  CAS  PubMed  Google Scholar 

  13. Reimer KA, Vander Heide RS, Richard VJ (1993) Reperfusion in acute myocardial infarction: effect of timing and modulating factors in experimental models. Am J Cardiol 72:13G–21G

    Article  CAS  PubMed  Google Scholar 

  14. Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography, and function during healing of anterior infarction. Am J Physiol 272:H1205–H1211

    CAS  PubMed  Google Scholar 

  15. Solomon A, Gersh B (1998) The open-artery hypothesis. Annu Rev Med 49:63–76

    Article  CAS  PubMed  Google Scholar 

  16. Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW et al (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165:2798–2808

    Article  CAS  PubMed  Google Scholar 

  17. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S et al (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  18. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia–reperfusion injury in mouse heart. Circulation 101:660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128:129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rotin D, Staub O, Haguenauer-Tsapis R (2000) Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 176:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984

    Article  CAS  PubMed  Google Scholar 

  22. Staub O, Rotin D (2006) Role of ubiquitylation in cellular membrane transport. Physiol Rev 86:669–707

    Article  CAS  PubMed  Google Scholar 

  23. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J et al (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407–412

    Article  CAS  PubMed  Google Scholar 

  25. Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD (2006) Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure 14:543–553

    Article  CAS  PubMed  Google Scholar 

  26. Fouladkou F, Landry T, Kawabe H, Neeb A, Lu C, Brose N et al (2008) The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc Natl Acad Sci USA 105:8585–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hsia HE, Kumar R, Luca R, Takeda M, Courchet J, Nakashima J et al (2014) Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc Natl Acad Sci USA 111:13205–13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan CD, Lum MA, Xu C, Black JD, Wang X (2013) Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem 288:1674–1684

    Article  CAS  PubMed  Google Scholar 

  29. Fouladkou F, Lu C, Jiang C, Zhou L, She Y, Walls JR et al (2010) The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1. J Biol Chem 285:6770–6780

    Article  CAS  PubMed  Google Scholar 

  30. Kim HK, Kang SW, Jeong SH, Kim N, Ko JH, Bang H et al (2012) Identification of potential target genes of cardioprotection against ischemia–reperfusion injury by express sequence tags analysis in rat hearts. J Cardiol 60:98–110

    Article  PubMed  Google Scholar 

  31. Meng XY, Yu HL, Zhang WC, Wang TH, Mai X, Liu HT et al (2014) ZFP580, a novel zinc-finger transcription factor, is involved in cardioprotection of intermittent high-altitude hypoxia against myocardial ischemia–reperfusion injury. PLoS One 9:e94635

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161

    Article  CAS  PubMed  Google Scholar 

  34. Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65:341–357

  35. Kawabe H, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S et al (2010) Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65:358–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellet MM, Piobbico D, Bartoli D, Castelli M, Pieroni S, Brunacci C et al (2014) NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle 13:1902–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Oppenheim RW, Sugiura Y, Lin W (2009) Abnormal development of the neuromuscular junction in Nedd4-deficient mice. Dev Biol 330:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amodio N, Scrima M, Palaia L, Salman AN, Quintiero A, Franco R et al (2010) Oncogenic role of the E3 ubiquitin ligase NEDD4-1, a PTEN negative regulator, in non-small-cell lung carcinomas. Am J Pathol 177:2622–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim SS, Yoo NJ, Jeong EG, Kim MS, Lee SH (2008) Expression of NEDD4-1, a PTEN regulator, in gastric and colorectal carcinomas. APMIS 116:779–784

    Article  PubMed  Google Scholar 

  40. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  41. Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S et al (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 32:10971–10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

W.H. designed the study, participated in data analysis, and wrote the article. P.Z. performed the experiments, participated in data analysis, and wrote the article. J.G., Q.Y., and D.Z. performed the experiments, data acquisition. This study was supported by the Shanghai Medical Key Specialty Construction Projects (Class A, No. ZK2012A24 and ZK2015A10), the Key Project from the Shanghai Municipal Commission of Health and Family Planning (No. 201640029), and the Min Hang District Science and Technology Committee (No. 2016MHZ70).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, P., Gu, J. et al. NEDD4-1 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis via the PI3K/Akt pathway. Apoptosis 22, 437–448 (2017). https://doi.org/10.1007/s10495-016-1326-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1326-2

Keywords

Navigation