Skip to main content

Advertisement

Log in

Gadolinium induced effects on mammalian cell motility, adherence and chromatin structure

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The toxicity of gadolinium is reduced by chelating agents that render this heavy metal into contrast complexes used for medical magnetic resonance imaging. However, the dissociation of gadolinium chelates is known to generate Gd3+ ions, the cellular toxicity of which has not been tested in details. The cytotoxic effects of Gd(III) ions were evaluated by monitoring the proliferation, measuring the cellular motility and following chromatin changes in various cell lines upon Gd3+ treatment. Measurements applied long-term scanning microscopy and a perfusion platform that replaced the medium with test solutions, bypassed physical contact with the cell culture during experiments, and provided uninterrupted high time-resolution time-lapse photomicrography for an extended period of time. Genotoxicity specific chromatin changes characteristic to Gd(III) were distinguished in human skin keratinocytes (HaCaT), human limbal stem cells (HuLi), colorectal adenocarcinoma (CaCO2), murine squamous carcinoma (SCC) and Indian muntjac (IM) cell lines. Characteristic features of Gd(III) toxicity were: loss of cellular motility, irreversible attachment of cells to the growth surface and cell death. Injury-specific chromatin changes manifested at micromolar Gd3+ concentrations as premature chromatin condensation and highly condensed sticky chromatin patches. Gd(III) concentration- and cell type-dependent reduction of normal adherence, as well as premature chromatin condensation confirmed apoptosis. The risk related to the release of toxic Gd3+ ions from gadolinium complexes and their effects on mono- and multi-layer cellular barriers have to be reconsidered when these chelated complexes are used as contrasting agents especially in relation to possible blood–brain barrier damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaCO2 :

Colorectal adenocarcinoma cell line

CAD:

Caspase-activated DNase

DAPI:

2,6-Diamino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminotetraacetic acid

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

Gd(III):

Gadolinium(III), Gd3+ ions

HaCaT:

Human skin keratinocyte line

HuLi:

Human limbal stem cell line

IM:

Indian muntjac cell line

MRI:

Magnetic resonance imaging

PBS:

Phosphate Buffered Saline

RPMI-1640:

Roswell Park Memorial Institute (RPMI) 1640 Medium

SCC:

Squamous carcinoma cell line

SSC:

Scanning Shadow Camera

References

  1. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buhaescu I, Izzedine H (2008) Gadolinium-induced nephrotoxicity. Int J Clin Pract 62:1113–1118

    Article  CAS  PubMed  Google Scholar 

  3. Ew Y, Dg A (2004) Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy. Clin Exp Pharmacol Physiol 31:551–556

    Article  Google Scholar 

  4. Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41:332–338

    Article  PubMed  Google Scholar 

  5. Gomes MB, Negrato CA (2014) Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr 6:80

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hofmann M, Mainka P, Tritschler H, Fuchs J, Zimmer G (1995) Decrease of red cell membrane fluidity and -SH groups due to hyperglycemic conditions is counteracted by alpha-lipoic acid. Arch Biochem Biophys 324:85–92

    Article  CAS  PubMed  Google Scholar 

  7. Lappas M, Permezel M, Rice GE (2003) N-Acetyl-cysteine inhibits phospholipid metabolism, proinflammatory cytokine release, protease activity, and nuclear factor-kappaB deoxyribonucleic acid-binding activity in human fetal membranes in vitro. J Clin Endocrinol Metab 88:1723–1729

    Article  CAS  PubMed  Google Scholar 

  8. Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10:477–484

    Article  CAS  PubMed  Google Scholar 

  9. Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648

    Article  CAS  PubMed  Google Scholar 

  10. Moran GR, Thornhill RE, Sykes J, Prato FS (2002) Myocardial viability imaging using Gd-DTPA: physiological modeling of infarcted myocardium, and impact on injection strategy and imaging time. Magn Reson Med 48:791–800

    Article  CAS  PubMed  Google Scholar 

  11. Bartolini ME, Pekar J, Chettle DR, McNeill F, Scott A, Sykes J, Prato FS, Moran GR (2003) An investigation of the toxicity of gadolinium based MRI contrast agents using neutron activation analysis. Magn Reson Imaging 21:541–544

    Article  CAS  PubMed  Google Scholar 

  12. Mizgerd JP, Molina RM, Stearns RC, Brain JD, Warner AE (1996) Gadolinium induces macrophage apoptosis. J Leukoc Biol 59:189–195

    CAS  PubMed  Google Scholar 

  13. Bernard J, Malawista SE (1995) Remembrance of professor Marcel Bessis (1917–1994). Blood Cell Mol Dis 21:152–155

    Article  CAS  Google Scholar 

  14. Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    Article  CAS  PubMed  Google Scholar 

  15. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimmermann U, Pilwat G, Riemann F (1974) Reversibler dielektrischer Durchbruch von Zellmembranen in elektrostatischen Feldern. Z Naturforsch 29:304–305

    CAS  Google Scholar 

  17. Kohli V, Elezzabi AY, Acker JP (2005) Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation. Lasers Surg Med 37:227–230

    Article  PubMed  Google Scholar 

  18. Kucera R, Paulus H (1982) Studied on ribonucleoside-diphosphate reductase in permeable animal cells. I. Reversible permeabilization of mouse L cells with dextran sulfate. Arch Biochem Biophys 214:102–113

    Article  CAS  PubMed  Google Scholar 

  19. Medepalli K, Alphenaar BW, Keynton RS, Sethu P (2013) A new technique for reversible permeabilization of live cells for intracellular delivery of quantum dots. Nanotechnology 24:205101

    Article  PubMed  Google Scholar 

  20. Miyamoto K, Yamashita T, Tsukiyama T, Kitamura N, Minami N, Yamada M, Imai H (2008) Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming by Xenopus egg extracts. Cloning Stem Cells 10:535–542

    Article  CAS  PubMed  Google Scholar 

  21. Fawcett JM, Harrison SM, Orchard CH (1998) A method for reversible permeabilization of isolated rat ventricular myocytes. Exp Physiol 83:293–303

    Article  CAS  PubMed  Google Scholar 

  22. Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F (1984) Nascent DNA chains synthesized in recersibly permeable cells of mouse thymocytes. Eur J Biochem 139:553–559

    Article  CAS  PubMed  Google Scholar 

  23. Banfalvi G (2014) Apoptotic agents inducing genotoxicity-specific chromatin changes. Apoptosis 19:1301–1316

    Article  CAS  PubMed  Google Scholar 

  24. Boukamp P, Petrusevska RT, Breitkreut D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  25. Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA, Fusenig NE (1990) c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50:2840–2847

    CAS  PubMed  Google Scholar 

  26. Turani M, Banfalvi G, Peter A, Kukoricza K, Kiraly G, Talas L, Tanczos B, Dezso B, Nagy G, Kemeny-Beke A (2015) Antibiotics delay in vitro human stem cell regrowth. Toxicol In Vitro 29:370–379

    Article  CAS  PubMed  Google Scholar 

  27. Hwang-Bo J, Park JH, Chung IS (2015) Tumstatin induces apoptosis mediated by Fas signaling pathway in oral squamous cell carcinoma SCC-VII cells. Oncol Lett 10:1016–1022

    PubMed  PubMed Central  Google Scholar 

  28. O’Malley BW, Cope KA, Johnson CS, Schwartz MR (1997) A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg 123:20–24

    Article  PubMed  Google Scholar 

  29. Walter EK, Dahlmann N, Gorgulla HT (1993) Tumor markers in the diagnosis and follow-up of head and neck cancer: role of CEA, CA 19 – 9, SCC, TK, and dTTPase. Head Neck 15:230–235

    Article  Google Scholar 

  30. Röhme D (1974) Prematurely condensed chromosomes of the Indian muntjac: a model system for the analysis of chromosome condensation and banding. Hereditas 76:251–258

    Article  PubMed  Google Scholar 

  31. Pillidge L, Downes CS, Johnson RT (1986) Defective post-replication recovery and uv sensitivity in a simian virus 40-transformed Indian muntjac cell line. Int J Radiat Biol 50:119–136

    CAS  Google Scholar 

  32. Nagy G, Tanczos B, Fidrus E, Talas L, Banfalvi G (2016) Chemically induced cell cycle arrest in perfusion cell culture. Meth Mol Biol. doi:10.1002/biot.201500327

    Article  Google Scholar 

  33. Farkas E, Ujvarosi K, Nagy G, Posta J, Banfalvi G (2010) Apoptogenic and necrogenic effects of mercuric acetate on the chromatin structure of K562 human erythroleukemia cells. Toxicol In Vitro 24:267–275

    Article  CAS  PubMed  Google Scholar 

  34. Horvath E, Nagy G, Turani M, Balogh E, Papp G, Pollak E, Pocsi I, Pesti M, Banfalvi G (2012) Effect of the fungal mycotoxin patulin on the chromatin structure of fission yeast Schizosaccharomyces pombe. J Basic Microbiol 52:1–11

    Article  Google Scholar 

  35. Nagy G, Hennig GW, Petrenyi K, Kovacs L, Pocsi I, Dombradi V, Banfalvi G (2014) Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl Microbiol Biotechnol 98:5185–5194

    Article  CAS  PubMed  Google Scholar 

  36. Banfalvi G (1993) Fluorescent analysis of replication and intermediates of chromatin folding in nuclei of mammalian cells. In: Bach PH, Reynolds CH, Clark JM, Mottley J, Poole PL (eds) Biotechnology applications of microinjection, microscopic imaging, and fluorescence. Plenum Press, New York, pp 111–119

    Chapter  Google Scholar 

  37. Munevar A, Wang Y-L, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was sponsored by TAMOP 4.2.4. A/2-11-1-2012-0001 grant to GN.

Author contributions

Gaspar Banfalvi has written the manuscript. No other assistance was utilized in the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Nagy.

Additional information

Viktoria Baksa and Alexandra Kiss have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, G., Baksa, V., Kiss, A. et al. Gadolinium induced effects on mammalian cell motility, adherence and chromatin structure. Apoptosis 22, 188–199 (2017). https://doi.org/10.1007/s10495-016-1311-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1311-9

Keywords

Navigation