Skip to main content
Log in

Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptotic cell clearance by macrophages is key for normal tissue development and homeostasis. Nuclear receptors, such as peroxisome proliferator activated receptors (PPARs), liver X receptor (LXR), retinoic acid receptor (RAR), retinoid X receptor (RXR) and glucocorticoid receptor (GR) orchestrate this vital process. The underlying mechanism involves the transcriptional control of key genes of apoptotic cell recognition and internalization, such as Cd36, Mertk, Axl, C1qa, Tgm2, Abca1. In addition, apoptotic cell uptake leads to M2 activation of macrophages, and this process is also controlled at the gene transcription level by nuclear receptors. Apoptotic cells provide signals for nuclear receptors, which in turn accelerate the safe disposal of apoptotic debris, which eventually allows renewal of the tissues, and impedes the development of inflammation and autoimmunity against dying cells. Nuclear receptor signaling is vulnerable to endocrine disruptors, which may interfere with the ability of macrophages to phagocytose and acquire M2 activation. This review summarizes the mechanisms, which allow nuclear receptors to control apoptotic cell clearance by macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABCA:

ATP cassette binding transporter

Axl:

Axl tyrosine kinase

C1q:

Complement component 1q

CD36:

Cluster of differentiation 36, scavenger receptor

CD163:

Haptoglobin receptor

CD206:

Mannose receptor

GAS6:

Growth-arrest-specific gene 6

GR:

Glucocorticoid receptor

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

IL-10:

Interleukin-10

LXR:

Liver X receptor

M1:

M1 or classical macrophage activation

M2:

M2 or alternative macrophage activation

MerTK:

Mer tyrosine kinase

PPAR:

Peroxisome proliferator activated receptor

PS:

Phosphatidylserine

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

TGM2:

Transglutaminase-2

TGF-β:

Tumor growth factor beta

VDR:

Vitamin D receptor

References

  1. Penberthy KK, Ravichandran KS (2016) Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 269:44–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901

    Article  CAS  PubMed  Google Scholar 

  4. Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 101:709–721

    Article  CAS  PubMed  Google Scholar 

  5. Röszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:16

    Article  Google Scholar 

  6. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  CAS  PubMed  Google Scholar 

  7. Röszer T (2012) Phagosomal and lysosomal NO synthesis. The biology of subcellular nitric oxide. Springer, Dordrecht, pp. 145–155

  8. Gonzalez N A, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258

    Article  Google Scholar 

  9. Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15:1266–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Röszer T, Menendez-Gutierrez MP, Lefterova MI, Alameda D, Nunez V, Lazar MA, Fischer T, Ricote M (2011) Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor gamma or retinoid X receptor alpha deficiency. J Immunol 186:621–631

    Article  PubMed  Google Scholar 

  11. Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG (1999) Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 162:3639–3646

    CAS  PubMed  Google Scholar 

  12. Röszer T, Menendez-Gutierrez MP, Cedenilla M, Ricote M (2013) Retinoid X receptors in macrophage biology. Trends Endocrinol Metab 24(9):460–468

    Article  PubMed  Google Scholar 

  13. Rigamonti E, Chinetti-Gbaguidi G, Staels B (2008) Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 28:1050–1059

    Article  CAS  PubMed  Google Scholar 

  14. Menendez-Gutierrez MP, Röszer T, Ricote M (2012) Biology and therapeutic applications of peroxisome proliferator- activated receptors. Curr Top Med Chem 12:548–584

    Article  CAS  PubMed  Google Scholar 

  15. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2:re3

  16. Smith TG, Serghides L, Patel SN, Febbraio M, Silverstein RL, Kain KC (2003) CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infect Immun 71:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189:204–213

    Article  CAS  PubMed  Google Scholar 

  18. Aronoff DM, Serezani CH, Carstens JK, Marshall T, Gangireddy SR, Peters-Golden M, Reddy RC (2007) Stimulatory effects of peroxisome proliferator-activated receptor-gamma on fcgamma receptor-mediated phagocytosis by alveolar macrophages. PPAR Res 2007:52546

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berry A, Balard P, Coste A, Olagnier D, Lagane C, Authier H, Benoit-Vical F, Lepert JC, Seguela JP, Magnaval JF, Chambon P, Metzger D, Desvergne B, Wahli W, Auwerx J, Pipy B (2007) IL-13 induces expression of CD36 in human monocytes through PPARgamma activation. Eur J Immunol 37:1642–1652

    Article  CAS  PubMed  Google Scholar 

  20. Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L (2007) PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 37:1343–1354

    Article  CAS  PubMed  Google Scholar 

  21. Kang JH, Lee GS, Jeung EB, Yang MP (2007) Trans-10, cis-12-conjugated linoleic acid increases phagocytosis of porcine peripheral blood polymorphonuclear cells in vitro. Br J Nutr 97:117–125

    Article  CAS  PubMed  Google Scholar 

  22. Dransfield I, Zagorska A, Lew ED, Michail K, Lemke G (2015) Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells. Cell Death Dis 6:e1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang Y, Wu S, Liu Q, Xie J, Zhang J, Han D, Lu Q, Lu Q (2015) Mertk deficiency affects macrophage directional migration via disruption of cytoskeletal organization. PLoS One 10:e0117787

    Article  PubMed  PubMed Central  Google Scholar 

  25. Behrens EM, Gadue P, Gong SY, Garrett S, Stein PL, Cohen PL (2003) The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol 33:2160–2167

    Article  CAS  PubMed  Google Scholar 

  26. Savina A, Amigorena S (2007) Phagocytosis and antigen presentation in dendritic cells. Immunol Rev 219:143–156

    Article  CAS  PubMed  Google Scholar 

  27. Menendez-Gutierrez MP, Röszer, T*., Fuentes L, Nunez V, Escolano A, Redondo JM, De Clerck N, Metzger D, Valledor AF, Ricote M (2015) Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling (*equal contribution). J Clin Invest 125:809–823

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garabuczi E, Sarang Z, Szondy Z (2015) Glucocorticoids enhance prolonged clearance of apoptotic cells by upregulating liver X receptor, peroxisome proliferator-activated receptor-delta and UCP2. Biochim Biophys Acta 1853:573–582

    Article  CAS  PubMed  Google Scholar 

  29. Choi JY, Seo JY, Yoon YS, Lee YJ, Kim HS, Kang JL (2015) Mer signaling increases the abundance of the transcription factor LXR to promote the resolution of acute sterile inflammation. Sci Signal 8:ra21

    Article  CAS  PubMed  Google Scholar 

  30. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    Article  CAS  PubMed  Google Scholar 

  31. Happonen KE, Tran S, Morgelin M, Prince R, Calzavarini S, Angelillo-Scherrer A, Dahlback B (2016) The Gas6-Axl protein interaction mediates endothelial uptake of platelet microparticles. J Biol Chem 291:10586–10601

    Article  CAS  PubMed  Google Scholar 

  32. Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, Ransohoff RM, Lamb BT, Landreth GE (2015) Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer’s disease. J Neurosci 35:6532–6543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trouw LA, Blom AM, Gasque P (2008) Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol 45:1199–1207

    Article  CAS  PubMed  Google Scholar 

  34. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986

    Article  CAS  PubMed  Google Scholar 

  35. Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, Blasko B, Becsi B, Erdodi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fesus L, Szondy Z (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182:2084–2092

    Article  CAS  PubMed  Google Scholar 

  36. Kawabe K, Takano K, Moriyama M, Nakamura Y (2015) Lipopolysaccharide-stimulated transglutaminase 2 expression enhances endocytosis activity in the mouse microglial cell line BV-2. Neuroimmunomodulation 22:243–249

    Article  CAS  PubMed  Google Scholar 

  37. Nadella V, Wang Z, Johnson TS, Griffin M, Devitt A (2015) Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. Biochim Biophys Acta 1853:201–212

    Article  CAS  PubMed  Google Scholar 

  38. Sandor K, Pallai A, Duro E, Legendre P, Couillin I, Saghy T, Szondy Z (2016) Adenosine produced from adenine nucleotides through an interaction between apoptotic cells and engulfing macrophages contributes to the appearance of transglutaminase 2 in dying thymocytes. Amino Acids (in press)

  39. Garabuczi E, Kiss B, Felszeghy S, Tsay GJ, Fesus L, Szondy Z (2013) Retinoids produced by macrophages engulfing apoptotic cells contribute to the appearance of transglutaminase 2 in apoptotic thymocytes. Amino Acids 44:235–244

    Article  CAS  PubMed  Google Scholar 

  40. Sarang Z, Joos G, Garabuczi E, Ruhl R, Gregory CD, Szondy Z (2014) Macrophages engulfing apoptotic cells produce nonclassical retinoids to enhance their phagocytic capacity. J Immunol 192:5730–5738

    Article  CAS  PubMed  Google Scholar 

  41. Sarang Z, Garabuczi E, Joos G, Kiss B, Toth K, Ruhl R, Szondy Z (2013) Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiology 218:1354–1360

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, Petasis NA, Erwig L, Rees AJ, Savill J, Brady HR, Godson C (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13:2497–2507

    Article  CAS  PubMed  Google Scholar 

  43. Costet P, Lalanne F, Gerbod-Giannone MC, Molina JR, Fu X, Lund EG, Gudas LJ, Tall AR (2003) Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol Cell Biol 23:7756–7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc Natl Acad Sci USA 104:10601–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luciani MF, Chimini G (1996) The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J 15:226–235

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerbod-Giannone MC, Li Y, Holleboom A, Han S, Hsu LC, Tabas I, Tall AR (2006) TNFalpha induces ABCA1 through NF-kappaB in macrophages and in phagocytes ingesting apoptotic cells. Proc Natl Acad Sci USA 103:3112–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ, Vandivier RW, Wang N, Greenberg S, Dale BM, Qin C, Henson PM, Tall AR (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mapes J, Chen YZ, Kim A, Mitani S, Kang BH, Xue D (2012) CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 22:1267–1275

    Article  CAS  PubMed  Google Scholar 

  49. Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS (2015) Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 125:2748–2758

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rebe C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessede G, Athias A, Steinmetz E, Lobaccaro JM, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105:393–401

    Article  CAS  PubMed  Google Scholar 

  51. Hauck CR, Lorenzen D, Saas J, Meyer TF (1997) An in vitro-differentiated human cell line as a model system to study the interaction of Neisseria gonorrhoeae with phagocytic cells. Infect Immun 65:1863–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhatia M, Kirkland JB, Meckling-Gill KA (1995) Monocytic differentiation of acute promyelocytic leukemia cells in response to 1,25-dihydroxyvitamin D3 is independent of nuclear receptor binding. J Biol Chem 270:15962–15965

    Article  CAS  PubMed  Google Scholar 

  53. Tokuda N, Levy RB (1996) 1,25-dihydroxyvitamin D3 stimulates phagocytosis but suppresses HLA-DR and CD13 antigen expression in human mononuclear phagocytes. Proc Soc Exp Biol Med 211:244–250

    Article  CAS  PubMed  Google Scholar 

  54. Mathieu C, Van Etten E, Gysemans C, Decallonne B, Kato S, Laureys J, Depovere J, Valckx D, Verstuyf A, Bouillon R (2001) In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J Bone Miner Res 16:2057–2065

    Article  CAS  PubMed  Google Scholar 

  55. Bohlson SS, O’Conner SD, Hulsebus HJ, Ho M-M, Fraser DA (2014) Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front Immunol 5:402

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vasina EM, Cauwenberghs S, Feijge MA, Heemskerk JW, Weber C, Koenen RR (2011) Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2:e211

    Article  CAS  PubMed  Google Scholar 

  58. Zizzo G, Cohen PL (2015) The PPAR-gamma antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-gamma in human macrophage polarization. J Inflamm (Lond) 12:36

    Article  Google Scholar 

  59. Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS, Kang JL (2015) PPARgamma activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol 8:1031–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fuentes L, Röszer T, Ricote M (2010) Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages. Mediators Inflamm 2010:219583

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grun F, Blumberg B (2009) Endocrine disrupters as obesogens. Mol Cell Endocrinol 304:19–29

    Article  PubMed  PubMed Central  Google Scholar 

  64. Couleau N, Falla J, Beillerot A, Battaglia E, D’Innocenzo M, Plancon S, Laval-Gilly P, Bennasroune A (2015) Effects of endocrine disruptor compounds, alone or in combination, on human macrophage-like THP-1 cell response. PLoS One 10:e0131428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Camarca A, Gianfrani C, Ariemma F, Cimmino I, Bruzzese D, Scerbo R, Picascia S, D’Esposito V, Beguinot F, Formisano P, Valentino R (2016) Human peripheral blood mononuclear cell function and dendritic cell differentiation are affected by bisphenol-a exposure. PLoS One 11:e0161122

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kotake Y (2012) Molecular mechanisms of environmental organotin toxicity in mammals. Biol Pharm Bull 35:1876–1880

    Article  CAS  PubMed  Google Scholar 

  67. le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, Balaguer P, Bourguet W (2009) Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep 10:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harford AJ, O’Halloran K, Wright PE (2007) Effect of in vitro and in vivo organotin exposures on the immune functions of murray cod (Maccullochella peelii peelii). Environ Toxicol Chem 26:1649–1656

    Article  CAS  PubMed  Google Scholar 

  69. Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 304:43–48

    Article  CAS  PubMed  Google Scholar 

  70. Watanuki H, Gushiken Y, Sakai M (2003) In vitro modulation of common carp (Cyprinus carpio L.) phagocytic cells by di-n-butyl phthalate and di-2-ethylhexyl phthalate. Aquat Toxicol 63:119–126

    Article  CAS  PubMed  Google Scholar 

  71. Sugita-Konishi Y, Shimura S, Nishikawa T, Sunaga F, Naito H, Suzuki Y (2003) Effect of Bisphenol A on non-specific immunodefenses against non-pathogenic Escherichia coli. Toxicol Lett 136:217–227

    Article  CAS  PubMed  Google Scholar 

  72. Canesi L, Lorusso LC, Ciacci C, Betti M, Zampini M, Gallo G (2004) Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. Gen Comp Endocrinol 138:58–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work performed in the author’s laboratory is supported by the Horizon 2020 Framework Program for Research and Innovation (655598), the German Research Fund (DFG, RO 4856/1–1), the German Academic Exchange Service (DAAD, 57202887), the International Graduate School in Molecular Medicine at University of Ulm, and the Institute of Comparative Molecular Endocrinology (director Prof. Dr. Jan Tuckermann), University of Ulm. The author acquired the image sequence shown in Fig. 1 at the Advanced Imaging Unit of the Spanish National Cardiovascular Research Center, Madrid. Livia Lelkes provided editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Röszer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röszer, T. Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors. Apoptosis 22, 284–294 (2017). https://doi.org/10.1007/s10495-016-1310-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1310-x

Keywords

Navigation