Skip to main content
Log in

Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PA:

Palmitate

FFAs:

Free fatty acids

BSA:

Bovine serum albumin

JAK:

Janus kinase

STAT3:

Signal transducer and activator of transcription 3

SOV:

Sodium orthovanadate

PTP:

Protein tyrosine phosphatase

PBS:

Phosphate buffered saline

NRVM:

Neonatal rat ventricular myocytes

ROS:

Reactive oxygen species

References

  1. Trivedi PS, Barouch LA (2008) Cardiomyocyte apoptosis in animal models of obesity. Curr Hypertens Rep 10(6):454–460

    Article  CAS  PubMed  Google Scholar 

  2. Szczepaniak L, Victor R, Orci L, Unger R (2007) Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 101(8):759–767

    Article  CAS  PubMed  Google Scholar 

  3. Wencker D, Chandra M, Nguyen K, Miao WF, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, Donath MY (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50(9):2105–2113

    Article  CAS  PubMed  Google Scholar 

  5. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279(5):H2124–H2132

    CAS  PubMed  Google Scholar 

  6. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Chang F, Li F, Fu H, Wang JL, Zhang SL, Zhao J, Yin DL (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Common 463(3):262–267

    Article  CAS  Google Scholar 

  8. Du WJ, Pan ZW, Chen X, Wang LM, Zhang Y, Li S, Liang HH, Xu CQ, Zhang Y, Wu YP, Shan HL, Lu YJ (2014) By targeting stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell Physiol Biochem 34(3):955–965

    Article  CAS  PubMed  Google Scholar 

  9. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104(9):979–981

    Article  CAS  PubMed  Google Scholar 

  10. Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, Lan H, Wu LB (2013) The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis 4:e746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuang JH, Tung LC, Lin Y (2015) Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World J Stem Cells 7:437–447

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95(2):187–195

    Article  CAS  PubMed  Google Scholar 

  13. Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY (2003) Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 100(22):12929–12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lecour S (2009) Multiple protective pathways against reperfusion injury: a SAFE path without Aktion? J Mol Cell Cardiol 46(5):607–609

    Article  CAS  PubMed  Google Scholar 

  15. Stephanou A, Brar BK, Knight RA, Latchman DS (2000) Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ 7(3):329–330

    Article  CAS  PubMed  Google Scholar 

  16. Carpenter RL, Lo HW (2014) STAT3 target genes relevant to human cancers. Cancers (Basel) 6(2):897–925

    Article  CAS  Google Scholar 

  17. Niu GL, Wright KL, Huang M, Song LX, Haura E, Turkson J, Zhang SM, Wang TH, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008

    Article  CAS  PubMed  Google Scholar 

  18. Zaanan A, Okamoto K, Kawakami H, Khazaie K, Huang S, Sinicrope FA (2015) Mutant KRAS upregulates BCL-XL via STAT3 to confer apoptosis resistance that is reversed by BIM induction and BCL-XL antagonism. J Biol Chem 290(39):23838–23849

    Article  CAS  PubMed  Google Scholar 

  19. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82(2):241–250

    Article  CAS  PubMed  Google Scholar 

  20. Wakahara R, Kunimoto H, Tanino K, Kojima H, Inoue A, Shintaku H, Nakajima K (2012) Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells 17(2):132–145

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Seow KT, Ong CT, Cao X (2002) Interdomain interaction of Stat3 regulates its Src homology 2 domain-mediated receptor binding activity. J Biol Chem 277(20):17556–17563

    Article  CAS  PubMed  Google Scholar 

  22. Booz GW, Day JN, Baker KM (2003) Angiotensin II effects on STAT3 phosphorylation in cardiomyocytes: evidence for Erk-dependent Tyr705 dephosphorylation. Basic Res Cardiol 98(1):33–38

    Article  CAS  PubMed  Google Scholar 

  23. Szczepanek K, Lesnefsky EJ, Larner AC (2012) Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol 22(8):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB (2013) The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem 288(7):4723–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li M, Smee JJ, Ding W, Crans DC (2009) Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats. J Inorg Biochem 103(4):585–589

    Article  CAS  PubMed  Google Scholar 

  27. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2015) Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Int J Mol Sci 16(6):12648–12668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehrlich VA, Nersesyan AK, Atefie K, Hoelzl C, Ferk F, Bichler J, Valic E, Schaffer A, Schulte-Hermann R, Fenech M, Wagner KH, Knasmuller S (2008) Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study. Environ Health Perspect 116(12):1689–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S, Ito A, Nanao T, Ohya S, Yoshino M, Zhu J, Enomoto A, Matsumoto Y, Funatsu O, Hosoi Y, Ikekita M (2010) Sodium orthovanadate inhibits p53-mediated apoptosis. Cancer Res 70(1):257–265

    Article  CAS  PubMed  Google Scholar 

  30. Noda C, Masuda T, Sato K, Ikeda K, Shimohama T, Matsuyama N, Izumi T (2003) Vanadate improves cardiac function and myocardial energy metabolism in diabetic rat hearts. Jpn Heart J 44(5):745–757

    Article  CAS  PubMed  Google Scholar 

  31. Takada Y, Hashimoto M, Kasahara J, Aihara K, Fukunaga K (2004) Cytoprotective effect of sodium orthovanadate on ischemia/reperfusion-induced injury in the rat heart involves Akt activation and inhibition of fodrin breakdown and apoptosis. J Pharmacol Exp Ther 311(3):1249–1255

    Article  CAS  PubMed  Google Scholar 

  32. Svedberg J, Bjorntorp P, Smith U, Lonnroth P (1990) Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes. Diabetes 39(5):570–574

    Article  CAS  PubMed  Google Scholar 

  33. Cumming DV, Heads RJ, Brand NJ, Yellon DM, Latchman DS (1996) The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocytes. Basic Res Cardiol 91(1):79–85

    CAS  PubMed  Google Scholar 

  34. Wu L, Tan JL, Wang ZH, Chen YX, Gao L, Liu JL, Shi YH, Endoh M, Yang HT (2015) ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca2+ overload and contractile dysfunction via the JAK2/STAT3 pathway. J Mol Cell Cardiol 81:150–161

    Article  CAS  PubMed  Google Scholar 

  35. Mohr A, Fahrenkamp D, Rinis N, Muller-Newen G (2013) Dominant-negative activity of the STAT3-Y705F mutant depends on the N-terminal domain. Cell Commun Signal 11:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482

    Article  CAS  PubMed  Google Scholar 

  37. Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Marino G, Lachkar S, Senovilla L, Galluzzi L, Kepp O, Pierron G, Maiuri MC, Hikita H, Kroemer R, Kroemer G (2012) Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 48(5):667–680

    Article  CAS  PubMed  Google Scholar 

  38. Niso-Santano M, Shen S, Adjemian S, Malik SA, Marino G, Lachkar S, Senovilla L, Kepp O, Galluzzi L, Maiuri MC, Kroemer G (2013) Direct interaction between STAT3 and EIF2AK2 controls fatty acid-induced autophagy. Autophagy 9(3):415–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, Shanker S, Ferrajoli A, Keating MJ, Estrov Z (2010) STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 115(14):2852–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Courapied S, Sellier H, de Carne Trecesson S, Vigneron A, Bernard AC, Gamelin E, Barre B, Coqueret O (2010) The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA damage upon topoisomerase I inhibition. J Biol Chem 285(35):26765–26778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang G, Yan H, Ye S, Tong C, Ying QL (2014) STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 32(5):1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou L, Too HP (2011) Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PLoS One 6(6):e21680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reich NC (2009) STAT3 revs up the powerhouse. Sci Signal 2(90):pe61

    Article  PubMed  Google Scholar 

  44. Bernier M, Paul RK, Martin-Montalvo A, Scheibye-Knudsen M, Song S, He HJ, Armour SM, Hubbard BP, Bohr VA, Wang L, Zong Y, Sinclair DA, de Cabo R (2011) Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 286(22):19270–19279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shulga N, Pastorino JG (2012) GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci 125(Pt 12):2995–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65(5):603–611

    CAS  PubMed  Google Scholar 

  47. Ding M, Gannett PM, Rojanasakul Y, Liu K, Shi X (1994) One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH. J Inorg Biochem 55(2):101–112

    Article  CAS  PubMed  Google Scholar 

  48. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195–200

    CAS  PubMed  Google Scholar 

  49. Bhuiyan MS, Fukunaga K (2009) Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci 110(1):1–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by The National 973 Research Project (No. 2014CB542400) and National Natural Science Foundation of China (Nos. 81570454 and 31371158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhao or Deling Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Fu, H., Chang, F. et al. Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway. Apoptosis 21, 546–557 (2016). https://doi.org/10.1007/s10495-016-1231-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1231-8

Keywords

Navigation