Skip to main content
Log in

Targeting of tumor-associated gangliosides with antibodies affects signaling pathways and leads to cell death including apoptosis

  • THE ROLE OF SPHINGOLIPIDS AND LIPID RAFTS IN DETERMINING CELL FATE
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Gangliosides are a diverse group of sialic acid containing glycosphigolipids that are abundantly present in an outer plasma membrane of some cells. Biological roles of gangliosides and other lipids in cell fate regulation are being extensively studied. Gangliosides are well known to be involved in interactions between cells and in signal transduction to regulate growth, adhesion and motility. Moreover, many gangliosides are tumor-associated antigens over-expressed on several tumor types. As a result, monoclonal antibodies binding gangliosides can be used to diagnose, monitor and to treat cancer patients. In the review, we gather and discuss data of various research groups on direct cytotoxic effects elicited by several ganglioside-specific antibodies, which bind to GM2, N-acetyl-GM2, N-glycolyl-GM2, GM3, GD3, GD2, O-acetyl-GD2, without involvement of immunological mechanisms. Thus, in cultures of numerous human and mouse cancer cell lines, the antibodies were reported to cause morphological changes, aggregation and detachment of cells, inhibition of proliferation and cell death involving necrosis, apoptosis and oncosis-like mechanisms. Additionally, data on proteome alterations were reviewed that encompass, among others, changes in kinome (P38, JNK, c-MET, ERK1/2, PI3K, AKT, FAK, aurora A, B, C), protein levels of transcription factors (P53, MYCN, HSF1) and pro-apoptotic proteins (caspase 3, BAX). Next, we collected data on application of the antibodies to enhance cytotoxicity of chemotherapeutic drugs and small molecule inhibitors. Finally, further research perspectives on the topic are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides-an overview. J Oleo Sci 60:537–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20:301–317

    Article  CAS  PubMed  Google Scholar 

  3. Flangea C, Serb A, Sisu E, Zamfir AD (2011) Chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta 1811:513–535. doi:10.1016/j.bbalip.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  4. Ghiulai RM, Sarbu M, Vukelić Ž, Ilie C, Zamfir AD (2014) Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 31:231–245

    Article  CAS  PubMed  Google Scholar 

  5. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125:2591–2625

    Article  PubMed  Google Scholar 

  6. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–1175. doi:10.1194/jlr.R800007-JLR200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sandhoff K, Harzer K (2013) Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 33:10195–10208. doi:10.1523/JNEUROSCI.0822-13.2013

    Article  CAS  PubMed  Google Scholar 

  8. Ryan JM, Rice GE, Mitchell MD (2013) The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res 33:877–887. doi:10.1016/j.nutres.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa K, Ohmi Y, Ohkawa Y, Tokuda N, Kondo Y, Tajima O, Furukawa K (2011) Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res 36:1578–1586. doi:10.1007/s11064-011-0494-2

    Article  CAS  PubMed  Google Scholar 

  10. Ohmi Y, Tajima O, Ohkawa Y, Yamauchi Y, Sugiura Y, Furukawa K, Furukawa K (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116:926–935. doi:10.1111/j.1471-4159.2010.07067.x

    Article  CAS  PubMed  Google Scholar 

  11. Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193. doi:10.1016/j.bbamem.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699. doi:10.1038/nrm2977

    Article  CAS  PubMed  Google Scholar 

  13. Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581:1783–1787

    Article  CAS  PubMed  Google Scholar 

  14. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2007) Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 282:8123–8133

    Article  CAS  PubMed  Google Scholar 

  15. Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557. doi:10.1016/j.sbi.2009.06.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sorice M, Matarrese P, Tinari A, Giammarioli AM, Garofalo T, Manganelli V, Ciarlo L, Gambardella L, Maccari G, Botta M, Misasi R, Malorni W (2009) Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 23:3298–3308. doi:10.1096/fj.08-128140

    Article  CAS  PubMed  Google Scholar 

  17. Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M (2014) Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:750–765. doi:10.4161/auto.27959

    Article  CAS  PubMed  Google Scholar 

  18. Todeschini AR, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Article  PubMed Central  Google Scholar 

  19. Pukel CS, Lloyd KO, Travassos LR, Dippold WG, Oettgen HF, Old LJ (1982) GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med 155:1133–1147

    Article  CAS  PubMed  Google Scholar 

  20. Longee DC, Wikstrand CJ, Månsson JE, He X, Fuller GN, Bigner SH, Fredman P, Svennerholm L, Bigner DD (1991) Disialoganglioside GD2 in human neuroectodermal tumor cell lines and gliomas. Acta Neuropathol 82:45–54

    Article  CAS  PubMed  Google Scholar 

  21. Livingston PO, Hood C, Krug LM, Warren N, Kris MG, Brezicka T, Ragupathi G (2005) Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol Immunother 54:1018–1025

    Article  CAS  PubMed  Google Scholar 

  22. Kailayangiri S, Altvater B, Meltzer J, Pscherer S, Luecke A, Dierkes C, Titze U, Leuchte K, Landmeier S, Hotfilder M, Dirksen U, Hardes J, Gosheger G, Juergens H, Rossig C (2012) The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer 106:1123–1133. doi:10.1038/bjc.2012.57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S (1996) Gangliosides expressed in human breast cancer. Cancer Res 56:5165–5171

    CAS  PubMed  Google Scholar 

  24. Alvarez-Rueda N, Desselle A, Cochonneau D, Chaumette T, Clemenceau B, Leprieur S, Bougras G, Supiot S, Mussini JM, Barbet J, Saba J, Paris F, Aubry J, Birklé S (2011) A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity. PLoS ONE 6:e25220. doi:10.1371/journal.pone.0025220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hettmer S, Ladisch S, Kaucic K (2005) Low complex ganglioside expression characterizes human neuroblastoma cell lines. Cancer Lett 225:141–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hettmer S, McCarter R, Ladisch S, Kaucic K (2004) Alterations in neuroblastoma ganglioside synthesis by induction of GD1b synthase by retinoic acid. Br J Cancer 91:389–397

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Birklé S, Zeng G, Gao L, Yu RK, Aubry J (2003) Role of tumor-associated gangliosides in cancer progression. Biochimie 85:455–463

    Article  PubMed  Google Scholar 

  28. Shibuya H, Hamamura K, Hotta H, Matsumoto Y, Nishida Y, Hattori H, Furukawa K, Ueda M, Furukawa K (2012) Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 103:1656–1664. doi:10.1111/j.1349-7006.2012.02344.x

    Article  CAS  PubMed  Google Scholar 

  29. Yan Q, Bach DQ, Gatla N, Sun P, Liu JW, Lu JY, Paller AS, Wang XQ (2013) Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 11:665–675. doi:10.1158/1541-7786.MCR-12-0270-T

    Article  CAS  PubMed  Google Scholar 

  30. Lee HC, Wondimu A, Liu Y, Ma JS, Radoja S, Ladisch S (2012) Ganglioside inhibition of CD8+ T cell cytotoxicity: interference with lytic granule trafficking and exocytosis. J Immunol 189:3521–3527

    Article  CAS  PubMed  Google Scholar 

  31. Wondimu A, Liu Y, Su Y, Bobb D, Ma JS, Chakrabarti L, Radoja S, Ladisch S (2014) Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 74:5449–5457. doi:10.1158/0008-5472.CAN-14-0927

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Wondimu A, Yan S, Bobb D, Ladisch S (2014) Tumor gangliosides accelerate murine tumor angiogenesis. Angiogenesis 17:563–571. doi:10.1007/s10456-013-9403-4

    Article  PubMed  Google Scholar 

  33. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337. doi:10.1158/1078-0432.CCR-09-0737

    Article  PubMed  Google Scholar 

  34. Ahmed M, Cheung NK (2014) Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett 588:288–297. doi:10.1016/j.febslet.2013.11.030

    Article  CAS  PubMed  Google Scholar 

  35. Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M (2013) Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol 3:306. doi:10.3389/fonc.2013.00306

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vázquez AM, Rodrèguez-Zhurbenko N, López AM (2012) Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry. Front Oncol 2:170. doi:10.3389/fonc.2012.00170

    PubMed Central  PubMed  Google Scholar 

  37. Horwacik I, Rokita H (2012) Application of molecular mimicry to target GD2 ganglioside. In: Shimada H (ed) Neuroblastoma—present and future, InTech, Rijeka, pp. 251–271. doi: 10.5772/30020

  38. Esser R, Müller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schönfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS (2012) NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16:569–581. doi:10.1111/j.1582-4934.2011.01343.x

    Article  CAS  PubMed  Google Scholar 

  39. Bjerkvig R, Engebraaten O, Laerum OD, Fredman P, Svennerholm L, Vrionis FD, Wikstrand CJ, Bigner DD (1991) Anti-GM2 monoclonal antibodies induce necrosis in GM2-rich cultures of a human glioma cell line. Cancer Res 51:4643–4648

    CAS  PubMed  Google Scholar 

  40. Nakamura K, Hanibuchi M, Yano S, Tanaka Y, Fujino I, Inoue M, Takezawa T, Shitara K, Sone S, Hanai N (1999) Apoptosis induction of human lung cancer cell line in multicellular heterospheroids with humanized antiganglioside GM2 monoclonal antibody. Cancer Res 59:5323–5330

    CAS  PubMed  Google Scholar 

  41. Roque-Navarro L, Chakrabandhu K, de León J, Rodríguez S, Toledo C, Carr A, de Acosta CM, Hueber AO, Pérez R (2008) Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol Cancer Ther 7:2033–2041. doi:10.1158/1535-7163.MCT-08-0222

    Article  CAS  PubMed  Google Scholar 

  42. Dippold WG, Knuth A, Meyer zum Büschenfelde KH (1984) Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3-ganglioside antibody. Cancer Res 44:806–810

    CAS  PubMed  Google Scholar 

  43. Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61(10):4244–4252

    CAS  PubMed  Google Scholar 

  44. Kowalczyk A, Gil M, Horwacik I, Odrowaz Z, Kozbor D, Rokita H (2009) The GD2-specific 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett 281:171–182. doi:10.1016/j.canlet.2009.02.040

    Article  CAS  PubMed  Google Scholar 

  45. Horwacik I, Durbas M, Boratyn E, Węgrzyn P, Rokita H (2013) Targeting GD2 ganglioside and aurora A kinase as a dual strategy leading to cell death in cultures of human neuroblastoma cells. Cancer Lett 341:248–264. doi:10.1016/j.canlet.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  46. Cochonneau D, Terme M, Michaud A, Dorvillius M, Gautier N, Frikeche J, Alvarez-Rueda N, Bougras G, Aubry J, Paris F, Birklé S (2013) Cell cycle arrest and apoptosis induced by O-acetyl-GD2-specific monoclonal antibody 8B6 inhibits tumor growth in vitro and in vivo. Cancer Lett 333:194–204. doi:10.1016/j.canlet.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  47. Hedberg KM, Dellheden B, Wikstrand CJ, Fredman P (2000) Monoclonal anti-GD3 antibodies selectively inhibit the proliferation of human malignant glioma cells in vitro. Glycoconj J 17:717–726

    Article  CAS  PubMed  Google Scholar 

  48. Liu B, Wu Y, Zhou Y, Peng D (2014) Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells. PLoS ONE 9:e93576. doi:10.1371/journal.pone.0093576

    Article  PubMed Central  PubMed  Google Scholar 

  49. Retter MW, Johnson JC, Peckham DW, Bannink JE, Bangur CS, Dresser K, Cai F, Foy TM, Fanger NA, Fanger GR, Woda B, Rock KL (2005) Characterization of a proapoptotic antiganglioside GM2 monoclonal antibody and evaluation of its therapeutic effect on melanoma and small cell lung carcinoma xenografts. Cancer Res 65:6425–6434

    Article  CAS  PubMed  Google Scholar 

  50. Doronin II, Vishnyakova PA, Kholodenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, Kholodenko RV (2014) Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer. doi:10.1186/1471-2407-14-295

    PubMed Central  PubMed  Google Scholar 

  51. Aixinjueluo W, Furukawa K, Zhang Q, Hamamura K, Tokuda N, Yoshida S, Ueda R, Furukawa K (2005) Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem 280:29828–29836

    Article  CAS  PubMed  Google Scholar 

  52. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le Bourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 8:1526–1535. doi:10.1158/1541-7786.MCR-10-0302

    Article  CAS  PubMed  Google Scholar 

  53. Cazet A, Bobowski M, Rombouts Y, Lefebvre J, Steenackers A, Popa I, Guérardel Y, Le Bourhis X, Tulasne D, Delannoy P (2012) The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology 22:806–816. doi:10.1093/glycob/cws049

    Article  CAS  PubMed  Google Scholar 

  54. Rahmaniyan M, Qudeimat A, Kraveka JM (2012) Bioactive sphingolipids in neuroblastoma. In: Shimada H (ed) Neuroblastoma—present and future, InTech, Rijeka, pp.153–184. doi: 10.5772/27830

  55. Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E, Ichikawa H, Rho J, Nakai A (2006) A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 25:4773–4783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yoshida S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2002) An anti-GD2 monoclonal antibody enhances apoptotic effects of anti-cancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res 93:816–824

    Article  CAS  PubMed  Google Scholar 

  57. Houghton AN, Mintzer D, Cordon-Cardo C, Welt S, Fliegel B, Vadhan S, Carswell E, Melamed MR, Oettgen HF, Old LJ (1985) Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci USA 82:1242–1246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Uttenreuther-Fischer MM, Huang CS, Reisfeld RA, Yu AL (1995) Pharmacokinetics of anti-ganglioside GD2 mAb 14G2a in a phase I trial in pediatric cancer patients. Cancer Immunol Immunother 41:29–36

    Article  CAS  PubMed  Google Scholar 

  59. Kushner BH, Kramer K, Modak S, Cheung NK (2011) Successful multifold dose escalation of anti-GD2 monoclonal antibody 3F8 in patients with neuroblastoma: a phase I study. J Clin Oncol 29:1168–1174. doi:10.1200/JCO.2010.28.3317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Gilman AL, Ozkaynak MF, Matthay KK, Krailo M, Yu AL, Gan J, Sternberg A, Hank JA, Seeger R, Reaman GH, Sondel PM (2009) Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children’s Oncology Group. J Clin Oncol 27:85–91. doi:10.1200/JCO.2006.10.3564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM; Children’s Oncology Group (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334. doi:10.1056/NEJMoa0911123

    Article  Google Scholar 

  62. Hernández AM, Rodríguez N, González JE, Reyes E, Rondón T, Griñán T, Macías A, Alfonso S, Vázquez AM, Pérez R (2011) Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. J Immunol 186:3735–3744. doi:10.4049/jimmunol.1000609

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants no.: NCN-2012/07/B/NZ1/02808 from the Polish National Science Center (HR) and DS/8/WBBiB. Faculty of Biochemistry, Biophysics and Biotechnology is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Horwacik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horwacik, I., Rokita, H. Targeting of tumor-associated gangliosides with antibodies affects signaling pathways and leads to cell death including apoptosis. Apoptosis 20, 679–688 (2015). https://doi.org/10.1007/s10495-015-1103-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1103-7

Keywords

Navigation