Skip to main content
Log in

Dynamic Mode Decomposition Analysis of High-Fidelity CFD Simulations of the Sinus Ventilation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Physiologically, sinus ventilation is a critical aspect of good functionality for human respiratory function, the understanding of which is still unclear. In this study we develop a method to measure sinus ventilation. Spatial and temporal features of the sinus recirculation are provided through dynamic mode decomposition (DMD). We associate the recirculation feature on the sinus epithelial surface through the wall shear-stress to the 3D airflow features corresponding to the sinus. Turbulent airflow simulations using a Large Eddy Simulation model were conducted in a patient who receives an endoscopic sinus surgery of the ethmoid + sphenoid sinuses. We analyze the flow rate through the ostium and the average wall shear-stress on the sinus epithelial surface. Based on the results, we then use a dynamic mode decomposition method on the sinus, which accurately measures the recirculation in the cavity. Drug delivery in the paranasal sinuses is challenging; therefore it is essential to understand well the airflow in this region. We suggest that DMD is a powerful method to analyze and understand this complex pathophysiology problem. This method has to be considered for the rhinologists as a milestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bahmanzadeh, H., Abouali, O., Faramarzi, M., Ahmadi, G.: Numerical simulation of airflow and micro-particle deposition in human nasal airway pre-and post-virtual sphenoidotomy surgery. Comput. Biol. Med. 61, 8 (2015)

    Article  Google Scholar 

  • Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1 (2016)

    Article  Google Scholar 

  • Calmet, H., Gambaruto, A., Bates, A., Vázquez, M.: Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. 69, 166–180 (2016)

    Article  Google Scholar 

  • Calmet, H., Houzeaux, G., Vázquez, M., Eguzkitza, B., Gambaruto, A., Bates, A., Doorly, D.: Flow features and micro-particle deposition in a human respiratory system during sniffing. J. Aerosol Sci. 123, 171–184 (2018)

    Article  Google Scholar 

  • Calmet, H., Yamamoto, T., Eguzkitza, B., Lehmkuhl, O., Olivares, E., Kobayashi, Y., Tomoda, K., Houzeaux, G., Vázquez, M.: Numerical evaluation of aerosol exhalation through nose treatment. J. Aerosol Sci. 128, 1 (2019)

    Article  Google Scholar 

  • Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22(6), 887 (2012)

    Article  MathSciNet  Google Scholar 

  • Chung, S.K., Byun, S., Na, Y.: Investigation of flow characteristics in the maxillary sinus where polypoid changes develop. Comput. Biol. Med. 102, 180 (2018)

    Article  Google Scholar 

  • Hongfei, L., Nan, Z., Claus, B., Luo, Z.: Highlights of eosinophilic chronic rhinosinusitis with nasal polyps in definition, prognosis, and advancement. Int. Forum Allergy Rhinol. 8(11), 1218 (2018)

    Article  Google Scholar 

  • Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024103 (2014)

    Article  Google Scholar 

  • Kaliner, M.A., Osguthorpe, J.D., Fireman, P., Anon, J., Georgitis, J., Davis, M.L., Naclerio, R., Kennedy, D.: Sinusitis: bench to bedside: current findings, future directions. J. Allergy Clin. Immunol. 99(6), S829 (1997)

    Article  Google Scholar 

  • Kobayashi, Y., Asako, M., Kanda, A., Tomoda, K., Yasuba, H.: A novel therapeutic use of HFA-BDP metereddose inhaler for asthmatic patients with rhinosinusitis: case series. Int. J. Clin. Pharmacol. Ther. 52(10), 914 (2014)

    Article  Google Scholar 

  • Kobayashi, Y., Asako, M., Ooka, H., Kanda, A., Tomoda, K., Yasuba, H.: Residual exhaled nitric oxide elevation in asthmatics is associated with eosinophilic chronic rhinosinusitis. J. Asthma 52(10), 1060 (2015a)

    Article  Google Scholar 

  • Kobayashi, Y., Asako, M., Ooka, H., Kanda, A., Tomoda, K., Yasuba, H.: Residual exhaled nitric oxide elevation in asthmatics is associated with eosinophilic chronic rhinosinusitis. J. Asthma 52, 1060 (2015b). https://doi.org/10.3109/02770903.2015.1054404

    Article  Google Scholar 

  • Kobayashi, Y., Asako, M., Yamamoto, T., Yasuba, H., Tomoda, K., Kanda, A.: Replacement of SFC-DPI with SFC-MDI exhaled through the nose improves eosinophilic chronic rhinosinusitis in patients with bronchial asthma. Int. J. Clin. Pharmacol. Ther. 55(1), 89 (2017)

    Article  Google Scholar 

  • Koullapis, P., Kassinos, S.C., Muela, J., Perez-segarra, C., Rigola, J., Lehmkuhl, O., Cui, Y., Sommerfeld, M., Elcner, J., Jicha, M., Saveljic, I., Filipovic, N., Lizal, F., Nicolaou, L.: Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods. Eur. J. Pharm. Sci. (2017). https://doi.org/10.1016/j.ejps.2017.09.003

    Article  Google Scholar 

  • Lin, D., Chandra, R., Tan, B., Zirkle, W., Conley, D., Grammer, L., Kern, R., Schleimer, R., Peters, A.: Association between severity of asthma and degree of chronic rhinosinusitis. Am. J. Rhinol. Allergy 25(4), 205 (2011). https://doi.org/10.2500/ajra.2011.25.3613

    Article  Google Scholar 

  • Nicoud, F., Ducros, F.: Flow, subgrid-scale stress modelling based on the square of the velocity gradient tensor. Turbul. Combust. 62(3), 183 (1999). https://doi.org/10.1023/A:1009995426001

    Article  MATH  Google Scholar 

  • Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Ann. Rev. Fluid Mech. 34(1), 349 (2002)

    Article  MathSciNet  Google Scholar 

  • Rennie, C.E., Hood, C.M., Blenke, E.J., Schroter, R.S., Doorly, D.J., Jones, H., Towey, D., Tolley, N.S.: Physical and computational modeling of ventilation of the maxillary sinus. Otolaryngol. Head Neck Surg. 145(1), 165 (2011)

    Article  Google Scholar 

  • Richecoeur, F., Hakim, L., Renaud, A., Zimmer, L.: DMD algorithm for experimental data processing in combustion. In: Proc. Summer Program Center for Turbulence Research, pp. 459–468 (2012)

  • Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23(1), 601 (1991)

    Article  Google Scholar 

  • Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5 (2010)

    Article  MathSciNet  Google Scholar 

  • Schmid, P.J.: Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50(4), 1123 (2011)

    Article  Google Scholar 

  • Taira, K., Brunton, S.L., Dawson, S.T.M, Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. (2017). https://doi.org/10.2514/1.J056060

    Article  Google Scholar 

  • Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S., Yeh, C.A.: Modal analysis of fluid flows: applications and outlook. arXiv:1903.05750 (2019)

  • Tokunaga, T., Sakashita, M., Haruna, T., Asaka, D., Takeno, S., Ikeda, H., Nakayama, T., Seki, N., Ito, S., Murata, J., Sakuma, Y., Yoshida, N., Terada, T., Morikura, I., Sakaida, H., Kondo, K., Teraguchi, K., Okano, M., Otori, N., Yoshikawa, M., Hirakawa, K., Haruna, S., Himi, T., Ikeda, K., Ishitoya, J., Iino, Y., Kawata, R., Kawauchi, H., Kobayashi, M., Yamasoba, T., Miwa, T., Urashima, M., Tamari, M., Noguchi, E., Ninomiya, T., Imoto, Y., Morikawa, T., Tomita, K., Takabayashi, T., Fujieda, S.: Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy 70(8), 995 (2015). https://doi.org/10.1111/all.12644

    Article  Google Scholar 

  • Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications, spectral analysis of fluid flows using sub-Nyquist-rate PIV data. arXiv:1312.0041 (2013)

  • Tu, J.H., Rowley, C.W., Kutz, J.N., Shang, J.K.: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55(9), 1805 (2014)

    Article  Google Scholar 

  • Zhu, J.H., Lee, H.P., Lim, K.M., Gordon, B.R., Wang, D.Y.: Effect of accessory ostia on maxillary sinus ventilation: a computational fluid dynamics (CFD) study. Respir. Physiol. Neurobiol. 183(2), 91 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadrien Calmet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

The protocol of the study has been approved by the ethical committee of Kansai Medical Hospital of Japan (Approval Number: 2014646). The subject signed informed consent before recruited in the study.

Appendix

Appendix

See Figs. 10 and 11.

Fig. 10
figure 10

a Flow pattern of the airflow and b zoom on left ethmoid + sphenoid ostium

Fig. 11
figure 11

Power spectrum computed by the FFT for 50 ms window of the velocity field at point A

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calmet, H., Pastrana, D., Lehmkuhl, O. et al. Dynamic Mode Decomposition Analysis of High-Fidelity CFD Simulations of the Sinus Ventilation. Flow Turbulence Combust 105, 699–713 (2020). https://doi.org/10.1007/s10494-020-00156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00156-8

Keywords

Navigation