Skip to main content
Log in

Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames

  • Original research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulence and mixing statistics are investigated in a set of flames at a jet Reynolds number of 15000 achieving a Taylor’s scale Reynolds number in the range 100 ≤Reλ ≤ 150. In particular, the impact on small scale turbulence statistics of different levels of flame extinction, induced imposing different Damköhler numbers in the three simulated cases, is investigated. It is found that the non-dimensional scalar dissipation depends on the Damköhler number slightly. This deviation from self-similarity manifests itself as a decrease of the non-dimensional scalar dissipation with increasing occurrence of localized extinction events. This is caused by the decrease of molecular diffusion due to the lower flame temperatures in the low Damköhler number cases. Probability density functions of the scalar dissipation χ show important deviations from the log-normal distribution. The left tail of the pdf scales as χ1/2 while the right tail scales as \(e^{-c\chi ^{\alpha }}\), as shown for incompressible turbulence. In all flames, the vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain and the gradient of mixture fraction aligns with the most compressive strain. Conditioning on the local values of mixture fraction and heat release does not affect the statistics. The alignment statistics of vorticity are in agreement with those in homogeneous isotropic turbulence while they show some difference compared to previous results in non premixed flames. The alignment between strain and mixture fraction gradient differs slightly from the homogeneous isotropic turbulent case but agree remarkably well with previous results observed in homogeneous shear incompressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10(3), 319–339 (1984)

    Article  Google Scholar 

  2. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13(01), 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vassilicos, J.C.: Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95–114 (2015)

    Article  MathSciNet  Google Scholar 

  4. Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schumacher, J., Sreenivasan, K.R., Yeung, P.K.: Very fine structures in scalar mixing. J Fluid Mech. 531, 113–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame. Proc. Combust. Inst. 30(1), 691–699 (2005)

    Article  Google Scholar 

  7. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal co/h2 kinetics. Proc Combust. Inst. 31, 1633–1640 (2007)

    Article  Google Scholar 

  8. Karpetis, A.N., Barlow, R.S.: Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proc Combust. Inst. 29(2), 1929–1936 (2002)

    Article  Google Scholar 

  9. Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Intermittency in premixed turbulent reacting flows. Phys. Fluids 24(7), 075111 (2012)

    Article  Google Scholar 

  10. Chaudhuri, S., Kolla, H., Dave, H.L., Hawkes, E.R., Chen, J.H., Law, C.K.: Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273–285 (2017)

    Article  Google Scholar 

  11. Kelman, J.B., Masri, A.R.: Reaction zone structure and scalar dissipation rates in turbulent diffusion flames. Combust. Sci. Technol. 129(4-6), 17–55 (1997)

    Article  Google Scholar 

  12. Karpetis, A.N., Barlow, R.S.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30 (1), 665–672 (2005)

    Article  Google Scholar 

  13. Sutton, J.A., Driscoll, J.F.: Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames. Combust. Flame 160(9), 1767–1778 (2013)

    Article  Google Scholar 

  14. Ashurst, Wm. T., Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30(8), 2343–2353 (1987)

    Article  Google Scholar 

  15. She, Z.S., Jackson, E., Orszag, S.A.: Structure and dynamics of homogeneous turbulence: models and simulations. In: Philos. Trans. R. Soc. London, Ser. A, vol. 434, pp. 101–124. The Royal Society (1991)

  16. Tsinober, A., Kit, E., Dracos, T.: Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech. 242, 169–192 (1992)

    Article  Google Scholar 

  17. Vincent, A., Meneguzzi, M.: The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245–254 (1994)

    Article  MATH  Google Scholar 

  18. Nomura, K.K., Elghobashi, S.E.: The structure of inhomogeneous turbulence in variable density nonpremixed flames. Theor. Comput. Fluid Dyn. 5(4-5), 153–175 (1993)

    Article  MATH  Google Scholar 

  19. Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of the α-strain and vorticity in turbulent nonpremixed flames. Phys. Fluids 8(8), 2251–2253 (1996)

    Article  Google Scholar 

  20. Boratav, O.N., Elghobashi, S.E., Zhong, R.: On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys. Fluids 10(9), 2260–2267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)

    Article  MATH  Google Scholar 

  22. Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18(4), 045102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chakraborty, N., Swaminathan, N.: Influence of the damköhler number on turbulence-scalar interaction in premixed flames. i. physical insight. Phys. Fluids 19(4), 045103 (2007)

    MATH  Google Scholar 

  24. Hartung, G., Hult, J., Kaminski, C.F., Rogerson, J.W., Swaminathan, N.: Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20(3), 035110 (2008)

    Article  MATH  Google Scholar 

  25. Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19(11), 115104 (2007)

    Article  MATH  Google Scholar 

  26. Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32(1), 1445–1453 (2009)

    Article  Google Scholar 

  27. Malkeson, S.P., Chakraborty, N.: Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys. Rev. E 83(4), 046308 (2011)

    Article  Google Scholar 

  28. Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)

    Article  Google Scholar 

  29. Chakraborty, N.: Statistics of vorticity alignment with local strain rates in turbulent premixed flames. Eur. J. Mech. B. Fluids 46, 201–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in dns of a laboratory high karlovitz premixed turbulent jet flame. Phys. Fluids 28(9), 095107 (2016)

    Article  Google Scholar 

  31. Coriton, B., Frank, J.H.: Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry. Phys. Fluids 28(2), 025109 (2016)

    Article  Google Scholar 

  32. Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161, 1849–1865 (2014)

    Article  Google Scholar 

  33. Bisetti, F., Attili, A., Pitsch, H.: Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philos. Trans. R. Soc. London, Ser. A 372(2022), 20130324 (2014)

    Article  Google Scholar 

  34. Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35, 1215–1223 (2015)

    Article  Google Scholar 

  35. Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Lagrangian analysis of mixing and soot transport in a turbulent jet flame. In: Direct and Large-Eddy Simulation IX, pp. 503–509. Springer (2015)

  36. Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Effects of non-unity lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166, 192–202 (2016)

    Article  Google Scholar 

  37. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tomboulides, A.G., Lee, J.C.Y., Orszag, S.A.: Numerical simulation of low mach number reactive flows. J. Sci Comput. 12(2), 139–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc. (2005)

  40. Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159(1), 317–335 (2012)

    Article  Google Scholar 

  41. Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors Combust. Flame 156(3), 588–607 (2009)

    Article  Google Scholar 

  42. Pitsch, H.: Flamemaster, a C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations. Technical report, University of Technology (RWTH) Aachen (1998)

  43. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  44. Attili, A., Bisetti, F.: Statistics and scaling of turbulence in a spatially developing mixing layer at R e λ = 250. Phys. Fluids 24(3), 035109 (2012)

    Article  Google Scholar 

  45. Attili, A., Bisetti, F.: Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 88(3), 033013 (2013)

    Article  Google Scholar 

  46. Pitsch, H.: FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations. Technical report, University of Technology (RWTH) Aachen (1998b)

  47. Chertkov, M., Falkovich, G., Kolokolov, I.V.: Intermittent dissipation of a passive scalar in turbulence. Phys. Rev Lett. 80(10), 2121–2124 (1998)

    Article  Google Scholar 

  48. Gamba, A., Kolokolov, I.V.: Dissipation statistics of a passive scalar in a multidimensional smooth flow. J. Stat. Phys. 94(5-6), 759–777 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Frisch, U.: Turbulence: The legacy of A. N. Kolmogorov. Cambridge University Press. ISBN 0521457130 (1995)

  50. Gamba, M., Clemens, N.T., Ezekoye, O.A.: Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame. Meas. Sci. Technol. 24(2), 024003 (2013)

    Article  Google Scholar 

  51. Dresselhaus, E., Tabor, M.: The kinematics of stretching and alignment of material elements in general flow fields. J. Fluid Mech. 236, 415–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(6787), 639–646 (2000)

    Article  Google Scholar 

  53. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable support from the KAUST Supercomputing Laboratory in the form of assistance with code development and computational time on the IBM System Blue Gene/P “Shaheen” at King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Attili.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attili, A., Bisetti, F. Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames. Flow Turbulence Combust 103, 625–642 (2019). https://doi.org/10.1007/s10494-019-00044-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00044-w

Keywords

Navigation