Skip to main content
Log in

Genetic diversity of Haemaphysalis longicornis from China and molecular detection of Rickettsia

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The tick Haemaphysalis longicornis (Neumann) (Acari, Ixodidae) is distributed throughout China and is the most notorious blood feeding ectoparasite of livestock. Haemaphysalis longicornis can transmit a large number of pathogens that cause human infectious diseases, such as Rickettsia spp. Here, we characterized the genetic structure of H. longicornis and tested for the presence of Rickettsia spp. from five regions in China. Analysis of the two mitochondrial marker sequences (16S rRNA and COI) and the nuclear sequence (ITS2) showed that the overall level of nucleotide diversity was low and the variability did not differ among the five regions. From the five locations, the infection rates of Rickettsia species ranged from 0 to 65%. The nucleotide diversities of the high-infected group were lower than those of the low- and uninfected group. And in neutrality tests for the high-infected group based on COI sequences, the Tajima’s D and Fu’s FS were coincidentally < 0 and significant, whereas they were closer to zero and non-significant in low- and uninfected groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahantarig A, Trinachartvanit W, Baimai V, Grubhoffer L (2013) Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol 58:419–428

    Article  CAS  Google Scholar 

  • Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM (2015) Thirty years of tick population genetics: a comprehensive review. Infect Geneti Evol 29:164–179

    Article  Google Scholar 

  • Baldridge GD, Burkhardt NY, Simser JA, Kurtti TJ, Munderloh UG (2004) Sequence and expression analysisi of the ompA gene of Rickettsia peacockii an endosymbiont of the Rocky Mountain wood tick Dermacentor andersoni. Appl Environ Microbiol 70:6628–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Carmichael JR, Fuerst PA (2006) A Rickettsial mixed infection in a Dermacentor variabilis tick from Ohio. Trans N Y Acad Sci 1078:334–337

    Article  CAS  Google Scholar 

  • Chantel NK, Shaun JD, Neil BC (2010) Genetic variation in the mitochondrial 16S rRNA gene of the American dog tick Dermacentor variabilis (Acari: Ixodidae). J Vector Ecol 35:163–172

    Article  Google Scholar 

  • Chen F, Coates B, He KL, Bai SX, Zhang TT, Wang ZY (2017) Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China. Mitochondrial DNA Part A 28:826–834

    Article  CAS  Google Scholar 

  • Choe HC, Fudge M, Sames WJ, Robbins RG, Lee IY, Chevalier NA, Chilcoat CD, Lee SH (2011) Tick surcveillance of dogs in the Republic of Korea. Syst Appl Acarol 16:215–222

    Google Scholar 

  • Chu CY, Liu W, Jiang BG, Wang DM, Jiang WJ, Zhao QM, Zhang PH, Wang ZX, Tang GP, Yang H, Cao WC (2008) Novel genospecies of Borrelia burgdorferi sensu lato from rodents and ticks in southwestern China. J Clin Microbiol 46:3130–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C (2008) Microbial communities and interactions in the lone star tick Amblyomma americanum. Mol Ecol 17:4371–4381

    Article  CAS  PubMed  Google Scholar 

  • Clayton DH, Al-Tamimi S, Johnson KP (2003) The ecological basis of coevolutionary history. In: Page RDM (ed) Tangled trees: phylogeny, cospeciation and coevolution. University of Chicago Press, Chicago, pp 311–341

    Google Scholar 

  • DeMeeûs T, Michalakis Y, Renaud F (1998) Santa Rosalia revisited: or why are there so many kinds of of parasites in ‘‘The Garden of Earthly Delights”? Parasitol Today 14:10–13

    Article  Google Scholar 

  • Fang LQ, Liu K, Li XL, Liang S, Yang Y, Yao HW, Sun RX, Sun Y, Chen WJ, Zuo SQ, Ma MJ, Li H, Jiang JF, Liu W, Yang XF, Gray GC, Krause PJ, Cao WC (2015) Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infect Dis 15:1467–1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, Nordberg E, Shukla M, Walenz B, Hill CA, Nene VM, Azad AF, Sobral BW, Caler E (2012) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194:376–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrisa Emma K, Verhoevea Victoria I, Banajeea Kaikhushroo H, Macalusob Jacqueline A, Azadb Abdu F, Macalusoa Kevin R (2017) Comparative vertical transmission of Rickettsia by Dermacentor variabilis and Amblyomma maculate. Ticks Tick-borne Dis 4:1–7

    Google Scholar 

  • Heath ACG, Tenquist JD, Bishop DM (1987) Goats, hares, and rabbits as hosts for the New Zealand cattle tick, Haemaphysalis longicornis. N Z J Zool 14:7

    Article  Google Scholar 

  • Heath ACG, Tenquist JD, Bishop DM (1988) Bird hosts of the New Zealand cattle tick, Haemaphysalis longicornis. N Z J Zool 15:2

    Article  Google Scholar 

  • Hoogstraal H, Roberts FH, Kohls GM, Tipton VJ (1968) Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and its parthenogenetic and bisexual populations (ixodoidea, Ixodidae). J Parasitol 54:1197–1213

    Article  CAS  PubMed  Google Scholar 

  • Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population phylogeographic and phylogenetic studies: the effects of inherited symbionts. P R Soc Lond B Bio 272:1525–1534

    CAS  Google Scholar 

  • Johnstone RA, Hurst GDD (1996) Maternally inherited male-killing microorganisms may confound interpretation of mtDNA variation in insects. Biol J Linn Soc 53:453–470

    Article  Google Scholar 

  • Keller GP, Windsor DM, Saucedo JM, Werren JH (2004) Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle Chelymorpha alternans Boh (Chrysomelidae Cassidinae). Mol Ecol 13:2405–2420

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Kim H, Won S, Kim HC, Chong ST, Klein TA, Kim KG, Seo HY, Chae JS (2014) Ticks collected from wild and domestic animals and natural habitats in the Republic of Korea. Korean J Parasitol 52:281–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasnov BRS, Arakelyan MS, Khokhlova IS, Burdelova NV, Degen AA (2003) Host specificity and foraging efficiency in blood-sucking parasite: feeding patterns of the flea Parapulex chephrenis on two species of desert rodents. Parasitol Res 90:393–399

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li L, Liu J, Hu Y, Liu Z, Guo L, Liu J (2013a) Coinfection of Dermacentor silvarum Olenev (acari: ixodidae) by coxiella-like, arsenophonus-like, and Rickettsia-like symbionts. Appl Environ Microbiol 79:2450–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LM, Liu JN, Liu Z, Yu ZJ, Xu SQ, Yang XH, Li T, Li SS, Liu JZ (2013b) Microbial communities and symbionts in the hard tick Haemaphysalis longicornis (Acari: Ixodidae) from north China. Parasit Vectors 6:1–8

    Article  Google Scholar 

  • McCoy KD (2003) Sympatric speciation in parasites—what is sympatry? Trends Parasitol 19:400–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Niebylski ML, Schrumpf ME, Burgdorfer W, Fischer ER, Gage KL, Schwan TG (1997) Rickettsia peacockii sp. nov. a new species infecting wood ticks, Dermacentor andersoni, in western montana. Int J Syst Bacteriol 47:446–452

    Article  CAS  PubMed  Google Scholar 

  • Noureddine R, Chauvin A, Plantard O (2011) Lack of genetic structure among Eurasian populations of the tick Ixodes ricinus contrasts with marked divergence from north-African populations. Int J Parasitol 41:183–192

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, George-Nascimento M (2007) The scaling of total parasite biomass with host body mass. Int J Parasitol 37:359–364

    Article  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary Biology of Parasites. Princeton University, Princeton

    Google Scholar 

  • Rainey T, Occi JL, Robbins RG, Egizi A (2018) Discovery of Haemaphysalis longicornis (Ixodida: ixodidae) parasitizing a sheep in New Jersey, United States. J Med Entomol 55:757–759

    Article  PubMed  Google Scholar 

  • Reichard MV, Kocan A (2006) Vector competency of genetically distinct populations of Amblyomma americanum in the transmission of Theileria cervi. Comp Parasitol 73:214–221

    Article  Google Scholar 

  • Steele JH (1977) The zoonoses in the South Pacific and their public health significance. Int J Zoonoses 4:1–20

    CAS  PubMed  Google Scholar 

  • Sun J, Lin J, Gong Z, Chang Y, Ye X, Gu S, Pang W, Wang C, Zheng X, Hou J, Ling F, Shi X, Jiang J, Chen Z, Lv H, Chai C (2015) Detection of spotted fever group rickettsiae in ticks from Zhejiang Province, China. Exp Appl Acarol 65:403–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the Genetics of Populations, vol 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yu MZ, Zhang KJ, Xue XF, Hong XY (2011) Effects of Wolbachia on mtDNA variation and evolution in natural populations of Tetranychus urticae Koch. Insect Mol Biol 20:311–321

    Article  CAS  PubMed  Google Scholar 

  • Yu ZJ, Wang H, Wang TH, Sun WY, Yang XL, Liu JZ (2015) Tick-borne pathogens and the vector potential of ticks in China. Parasit Vectors 8:1–8

    Article  CAS  Google Scholar 

  • Yury I (2013) Coevolution of Drosophila melanogaster mtDNA and Wolbachia Genotypes. Plos One 8(1):1–11

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (31272372), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20131303130001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingze Liu or Rong Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Feng, X., Zhang, Y. et al. Genetic diversity of Haemaphysalis longicornis from China and molecular detection of Rickettsia. Exp Appl Acarol 79, 221–231 (2019). https://doi.org/10.1007/s10493-019-00423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00423-y

Keywords

Navigation