Skip to main content
Log in

Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The spread of blacklegged ticks (Ixodes scapularis) and growing threat of Lyme disease transmission has increased demand for effective, safe and environmentally friendly repellent products. Plant-derived essential oils are natural products that exhibit insecticidal and repellant activities and represent a promising alternative to synthetic repellants. However, mechanisms by which ticks detect odor stimuli and how such stimuli may function as repellents are not well understood. We examined the repellent activity of selected essential oil components towards I. scapularis in short- and long-term dose–response trials. To determine the specific olfactory organs involved in detection of chemical stimuli, we tested tick behavioral response in repellency bioassays after removing appendages that house chemosensory sensilla (e.g., foretarsi or pedipalps). New prototype formulae were tested in longevity trials repelling up to 95% of tested ticks after 1 h post-application. This study provides new insight regarding tick olfaction and behavior, and innovative methods for selecting appropriate chemicals for development of novel plant-based repellent products for protection from ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghaffar F, Al-Quraishy S, Mehlhorn H (2015) Length of Tick repellency depends on formulation of the repellent compound (icaridin = Saltidin®): test on Ixodes persulcatus and Ixodes ricinus placed on hands and clothes. Parasitol Res 114:3041–3045

    Article  PubMed  Google Scholar 

  • Anderson JF, Magnarelli LA (2008) Biology of ticks biology of ticks. Infect Dis Clin North Am 22:195–215

    Article  PubMed  Google Scholar 

  • Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop 179:47–54

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-born disease? Parasitol Res 115:2545–2560

    Article  PubMed  Google Scholar 

  • Bissinger WB, Roe RM (2010) Tick repellent: past, present, and future. Pestic Biochem Phys 96:63–79

    Article  CAS  Google Scholar 

  • Bissinger WB, Roe RM (2014) Tick repellent research methods and development. In: Sonenshine DE, Roe RM (eds) Biology of ticks, vol 2. Oxford University Press, New York, pp 382–408

    Google Scholar 

  • Bissinger BW, Schmidt JP, Owens JJ, Mitchell SM, Kennedy MK (2014) Activity of the plant-based repellent, TT-4302 against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus (Acari: Ixodidae). Exp Appl Acarol 62:105–113

    Article  CAS  PubMed  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    Article  CAS  PubMed  Google Scholar 

  • Carr AL, Roe M (2016) Acarine attractants: chemoreception, bioassay, chemistry and control. Pestic Biochem Phys 131:60–79

    Article  CAS  Google Scholar 

  • Carr AL, Mitchell RD III, Dhammi A, Bissinger BW, Sonenshine DE, Roe RM (2017) Tick Haller’s organ, a new paradigm for arthropod olfaction: how ticks differ from insects. Int J Mol Sci 18:1563. https://doi.org/10.3390/ijms18071563

    Article  CAS  PubMed Central  Google Scholar 

  • Carroll JF, Solberg VB, Klun JA, Kramer M, Debboun M (2004) Comparative activity of deet and AI3-37220 repellents against the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. J Med Entomol 41:249–254

    Article  CAS  PubMed  Google Scholar 

  • Carroll JF, Klun JA, Debboun M (2005) Repellency of deet and SS220 applied to skin involves olfactory sensing by two species of ticks. Med Vet Entomol 19:101–106

    Article  CAS  PubMed  Google Scholar 

  • Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR, Coy M, Becnel JJ, Demirci B, Baser KHC, Zhang J, Zhang S (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol 36:258–268

    Article  PubMed  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol—a review of a commercially important fragrance material. S Afr J Bot 76:643–651

    Article  CAS  Google Scholar 

  • de Bruyne M, Guerin PM (1998) Contact chemostimuli in the mating behaviour of the cattle tick, Boophilus microplus. Arch Insect Biochem 39:65–80

    Article  Google Scholar 

  • Del Fabbro S, Nazzi F (2013) From chemistry to behavior Molecular structure and bioactivity of repellents against Ixodes ricinus ticks. PLoS ONE. https://doi.org/10.1371/journal.pone.0067832

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisen RJ, Eisen L (2018) The blacklegged tick, Ixodes scapularis: and increasing public health concern. Trends Parasitol 34:295–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Falco RC, Fish D (1991) Horizontal movement of adult Ixodes dammini (Acari: Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729

    Article  CAS  PubMed  Google Scholar 

  • Fernandes Soares S, Ferreira Borges LM, de Sousa Braga R, Lopes Ferreira L, Braz Louly CC, Tresvenzol LMF, de Paula JR, Ferri PH (2010) Repellent activity of plant-derived compounds against Amblyomma cajennese (Acari: Ixodidae) nymphs. Vet Parasitol 167:67–73

    Article  CAS  Google Scholar 

  • Ferreira LL, de Oliveira Filho J, Moura Mascarin G, Pérez de León A, Ferreira Borges LM (2017) In vitro repellency of DEET and beta-citronellol against the ticks Rhipicephalus sanguineus sensu latu and Amblyomma sculptum. Vet Parasitol 239:42–45

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF, Chu-Wang IW (1972) Fine structural analysis of palpal receptors in the tick Amblyomma americanum (L.). Zeitschrift für Zellforschung und Mikroskopische Anatomie 129:548–560

    Article  CAS  PubMed  Google Scholar 

  • Gross AD, Coats JR (2015) Can green chemistry provide effective repellents? In: Debboun M, Frances S, Strickman D (eds) Insect repellents handbook. CRC Press, Boca Raton, pp 75–90

    Google Scholar 

  • Lalko J, Api AM (2006) Investigation of dermal sensitization potential of various essential oils in the local lymph node assay. Food Chem Toxicol 44:739–746

    Article  CAS  PubMed  Google Scholar 

  • Lee MY (2018) Essential oils as repellents against arthropods. Biomed Res Int. https://doi.org/10.1155/2018/6860271

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore SJ, Lenglet A, Hill N (2007) Plant-based insect repellents. In: Debboun M, Frances S, Strickman D (eds) Insect repellents: principles, methods, and uses. CRC Press, Boca Raton, pp 305–310

    Google Scholar 

  • Müller GC, Junnila A, Butler J, Kravchenko VD, Revay EE, Weiss RW, Schlein Y (2009) Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J Vector Ecol 34:2–8

    Article  PubMed  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  CAS  PubMed  Google Scholar 

  • Nijkamp MM, Bokkers BGH, Bakker MI, Ezendam J, Delmaar JE (2015) Quantitative risk assessment of the aggregate dermal exposure to the sensitizing fragrance geraniol in personal care products and household cleaning agents. Regul Toxicol Pharm 73:9–18

    Article  CAS  Google Scholar 

  • Ogden NH, Brigas-Poulin M, Hanincová K, Maarouf A, O’Callaghan CJ, Kurtenbach K (2008a) Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol 254:621–632

    Article  CAS  PubMed  Google Scholar 

  • Ogden NH, Phil D, Lindsay LR, Morshed M, Sockett PN, Artsob H (2008b) The rising challenge of Lyme borreliosis in Canada. Can Commun Dis Rep 34:1–19

    CAS  PubMed  Google Scholar 

  • Phillips JS, Sonenshine DE (1993) Role of the male claw sensilla in the perception of female mounting sex pheromone in Dermacentor variabilis, Dermacentor andersoni and Amblyomma americanum. Exp Appl Acarol 17:631–653

    Article  CAS  Google Scholar 

  • Piesman J, Dolan MC (2002) Protection against Lyme disease spirochete transmission provided by prompt removal of nymphal Ixodes scapularis (Acari: Ixodidae). J Med Entomol 39:509–512

    Article  PubMed  Google Scholar 

  • Politano VT, Diener RM, Christian MS, Hawkins DR, Ritacco G, Api AM (2013a) The pharmacokinetics of phenylethyl alcohol (PEA) safety evaluation comparisons in rats, rabbits, and humans. Int J Toxicol 32:39–47

    Article  CAS  PubMed  Google Scholar 

  • Politano VT, Diener RM, Christian MS, Hoberman AM, Palmer A, Ritacco G, Adams TB, Api AM (2013b) Oral and dermal developmental toxicity studies of phenylethyl alcohol in rats. Int J Toxicol 32:32–38

    Article  CAS  PubMed  Google Scholar 

  • Renthal R, Manghnani L, Bernal S, Qu Y, Griffith WP, Lohmeyer K, Guerrero FD, Borges LMF, Pérez de León A (2017) The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins. Insect Sci 24:730–742

    Article  CAS  PubMed  Google Scholar 

  • Ripoche M, Gasmi S, Adam-Poupart A, Koffi JK, Lindsay LR, Ludwing A, Milord F, Ogden NH, Thivierge K, Leighton PA (2018) Passive tick surveillance provides an accurate early signal of emerging Lyme disease risk and human cases in Southern Canada. J Med Entomol 55:1016–1026

    Article  PubMed  Google Scholar 

  • RStudio Team (2018) RStudio: integrated development for R. RStudio, R. Boston (MA). https://www.rstudio.com

  • Scognamiglio J, Jones L, Letizia CS, Api AM (2012) Fragrance material review on phenylethyl alcohol. Food Chem Toxicol 50:S224–S239

    Article  CAS  PubMed  Google Scholar 

  • Showler AT, Harlien JL (2017) Botanical compound p-anisaldehyde repels larval lone star tick (Acari: Ixodidae), and halts reproduction by gravid adults. J Med Entomol. https://doi.org/10.1093/jme/tjx158

    Article  Google Scholar 

  • Šimo L, Sonenshine DE, Park Y, Zitnan D (2013) Nervous and sensory systems: structure, genomics and proteomics. In: Sonenhine DE, Roe M (eds) Biology of ticks, vol 1. Oxford University Press, New York, pp 309–367

    Google Scholar 

  • Snydman DR (2017) Lyme disease. Medicine 45:734–746

    Article  Google Scholar 

  • Soares SF, Borges LMF (2012) Electrophysiological responses of the olfactory receptors of the tick Amblyomma cajennense (Acari: Ixodidae) to host-related and tick pheromone-related synthetic compounds. Acta tropica 124:192–198

    Article  CAS  PubMed  Google Scholar 

  • Soares SF, Louly CCB, Marion-Poll F, Ribeiro MFB, Borges LMF (2013) Study on cheliceral sensilla of the brown dog tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) involved in taste perception of phagostimulants. Acta Trop 126:75–83

    Article  PubMed  Google Scholar 

  • Sridharan TB, Prakash S, Chauhan RS, Rao KM, Singh K, Singh RN (1998) Sensilla on the palps and legs of the adult soft tick Argas persicus Oken (Ixodoidea: Argasidae) and their projections to the central nervous system. Int J Insect Morph Embryol 27:273–289

    Article  Google Scholar 

  • Stafford KC III, Williams SC, Molaei G (2017) Integrated pest management in controlling ticks and tick-associated diseases. J Int Pest Manag 8:1–7

    Article  Google Scholar 

  • Tabanca N, Wang M, Avonto C, Chittiboyina AG, Parcher JF, Carroll JF, Kramer M, Khan IA (2013) Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J Agric Food Chem 61:4101–4107

    Article  CAS  PubMed  Google Scholar 

  • Tak JH, Jovel E, Isman MB (2017) Synergistic interactions among the major constituents of lemongrass essential oil against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J Pest Sci 90:735–744

    Article  Google Scholar 

  • Thorsell W, Mikiver A, Tunón H (2006) Repelling properties of some plant materials on the tick Ixodes ricinus L. Phytomed 13:132–134

    Article  CAS  Google Scholar 

  • Tisserand R, Young R (2013) Essential oil safety-E-Book: a guide for health care professionals. Elsevier, Amsterdam

    Google Scholar 

  • Tunón H, Thorsell W, Mikiver A, Malander I (2006) Arthropod repellency, especially tick (Ixodes Ricinus), exerted by extract from Artemisia Abrotanum and essential oil from flowers of Dianthus Caryophyllum. Fitoterapia 77:257–261

    Article  CAS  PubMed  Google Scholar 

  • Waladde SM, Rice MJ (1982) The sensory basis of tick feeding behavior. In: Obenchain FD, Galun R (eds) Physiology of ticks, current themes in tropical science. Elsevier, Amsterdam

    Google Scholar 

  • Weldon PJ, Carroll JF, Kramer M, Bedoukian RH, Coleman RE, Bernier UR (2011) Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to citrus (Rutaceae) peel exudates and monoterpene components. J Chem Ecol 37:348–359

    Article  CAS  PubMed  Google Scholar 

  • White A, Gaff H (2018) Review: application of tick control technologies for blacklegged, lone star, and American dog ticks. J Integr Pest Manag 12:1–10

    Google Scholar 

  • Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, Baker PD, Wang D et al (2018) Better than DEET repellent compounds derived from coconut oil. Sci Rep 8:14053. https://doi.org/10.1038/s41598-018-32373-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Wendy Hillier and Angie Moore for technical assistance and data collection. We thank Atlantick® Repellent Products for technical support. Special thanks to two anonymous reviewers for their constructive comments and support. This research project was funded by the Canadian Lyme Disease Foundation (CanLyme, Venture Grant to NF), Productivity & Innovation Voucher Grant (Nova Scotia) (to NF), and NSERC Discovery funding (RGPIN-2017-04319 to NKH).

Author information

Authors and Affiliations

Authors

Contributions

NF, SM, and NKH conceived and designed research. NF and SM conducted the experiments. NF analyzed data. NF, SM, and NKH wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Nicoletta Faraone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraone, N., MacPherson, S. & Hillier, N.K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp Appl Acarol 79, 195–207 (2019). https://doi.org/10.1007/s10493-019-00421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00421-0

Keywords

Navigation