Skip to main content
Log in

Trajectory similarity clustering based on multi-feature distance measurement

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

With the development of GPS-enabled devices, wireless communication and storage technologies, trajectories representing the mobility of moving objects are accumulated at an unprecedented pace. They contain a large amount of temporal and spatial semantic information. A great deal of valuable information can be obtained by mining and analyzing the trajectory dataset. Trajectory clustering is one of the simplest and most powerful methods to obtain knowledge from trajectory data, which is based on the similarity measure between trajectories. The existing similarity measurement methods cannot fully utilize the specific features of trajectory itself when measuring the distance between trajectories. In this paper, an enhanced trajectory model is proposed and a new trajectory clustering algorithm is presented based on multi-feature trajectory similarity measure, which can maximize the similarity of trajectories in the same cluster, and can be used to better serve for applications including traffic monitoring and road congestion prediction. Both the intuitive visualization presentation and the experimental results on synthetic and real trajectory datasets show that, compared to existing methods, the proposed approach improves the accuracy and efficiency of trajectory clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://avires.dimi.uniud.it/papers/trclust/creatle_ts2.m

References

  1. Zheng Y, Xie X, Ma W-Y (2010) GeoLife: a collaborative social networking service among user, location and trajectory[J]. IEEE Data Eng Bullet 33(2):32–39

    Google Scholar 

  2. Hu W, Li X, Tian G et al (2013) An incremental DPMM-based method for trajectory clustering, modeling, and retrieval[J]. IEEE Trans Pattern Anal Mach Intell 35(5):1051–1065

    Article  Google Scholar 

  3. Luo W, Tan H, Chen L et al (2013) Finding time period-based most frequent path in big trajectory data[C]. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 713–724

  4. Zheng Y. (2015) Trajectory data mining: An overview[J]. ACM Trans Intell Syst Technol (TIST) 6(3):29

    Google Scholar 

  5. Lv M, Chen L, Xu Z et al (2016) The discovery of personally semantic places based on trajectory data mining[J]. Neurocomputing 173:1142–1153

    Article  Google Scholar 

  6. Zheng K, Zheng Y, Yuan NJ et al (2014) Online discovery of gathering patterns over trajectories[J]. IEEE Trans Knowl Data Eng 26(8):1974–1988

    Article  Google Scholar 

  7. Sanchez I, Aye ZMM, Rubinstein BIP et al (2016) Fast trajectory clustering using hashing methods[C]. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN), pp 3689–3696

  8. Han B, Liu L, Omiecinski E (2015) Road-network aware trajectory clustering: integrating locality, flow, and density[J]. IEEE Trans Mob Comput 14(2):416–429

    Article  Google Scholar 

  9. Zhao P, Qin K, Ye X et al (2016) A trajectory clustering approach based on decision graph and data field for detecting hotspots[J]. Int J Geogr Inf Sci 31(7):1–27

  10. Nikolaou TG, Kolokotsa DS, Stavrakakis GS et al (2012) On the application of clustering techniques for office buildings’ energy and thermal comfort classification[J]. IEEE Trans Smart Grid 3(4):2196–2210

    Article  Google Scholar 

  11. Yuan G, Sun P, Zhao J et al (2017) A review of moving object trajectory clustering algorithms[J]. Artif Intell Rev 47:123–144

    Article  Google Scholar 

  12. Lee J -G, Han J, Whang K-Y (2007) Trajectory clustering: A partition-and-group framework[C]. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 593–604

  13. Pelekis N, Kopanakis I, Kotsifakos EE et al (2011) Clustering uncertain trajectories[J]. Knowl Inf Syst 28(1):117–147

    Article  Google Scholar 

  14. Besse PC, Guillouet B, Loubes JM et al (2017) Destination prediction by trajectory distribution based model[J]. IEEE Transactions on Intelligent Transportation Systems:1–12

  15. Lloyd SP (1982) Least squares quanization in PCM[J]. IEEE Trans Inf Theory 28(2):129–137

    Article  MATH  Google Scholar 

  16. Ester M, kriegel HP, Sander J et al (1996) A density-Based algorithm for discovering clusters in large spatial databases with noise[C]. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231

  17. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH An efficient data clustering databases method for very large databases[C]. Proc ACM SIGMOD Int Conf Manag Data 1:103–114

    Article  Google Scholar 

  18. Ankerst M, Breunig MM, Kriegel H-P et al (1999) Optics: ordering points to identify the clustering structure[C]. ACM Sigmod Record 28(2):49–60

    Article  Google Scholar 

  19. Pravilovic S, Appice A, Lanza A et al (2014) Wind power forecasting using time series cluster analysis[G]. In: Discovery science. Springer International Publishing, pp 276–287

  20. Laurinec P, LóDerer M, Vrablecová P et al (2017) Adaptive time series forecasting of energy consumption using optimized cluster analysis[C]. In: Proceedings of the IEEE international conference on data mining workshops, pp 398–405

  21. Wei J, Yu H, Chen JH et al (2011) Parallel clustering for visualizing large scientific line data[C]. In: Proceedings of the 1st IEEE symposium on large-scale data analysis and visualization (LDAV), pp 47–55

  22. Atev S, Miller G, Papanikolopoulos NP (2010) Clustering of vehicle trajectories[J]. IEEE Trans Intell Transp Syst 11(3):647–657

    Article  Google Scholar 

  23. Choong M Y, Chin R K Y, Yeo KB et al (2014) Trajectory clustering for behavioral pattern learning in transportation surveillance[C]. In: Proceedings of the 4th IEEE international conference on artificial intelligence with applications in engineering and technology(ICAIET), pp 199–203

  24. Ferreira N, Klosowski JT, Scheidegger CE et al (2013) Vector field k-means: clustering trajectories by fitting multiple vector fields[C]. Eurographics Conf Vis (EuroVis) 32(3pt2):201–210

    Google Scholar 

  25. Su H, Zheng K, Huang J et al (2015) Calibrating trajectory data for spatio-temporal similarity analysis[J]. VLDB J 24(1):93– 116

    Article  Google Scholar 

  26. Lin B, Su J (2008) One way distance: for shape based similarity search of moving object trajectories[J]. Geoinformatica 12(2):117–142

    Article  Google Scholar 

  27. Morris B, Trivedi M (2009) Learning trajectory patterns by clustering: experimental studies and comparative evaluation[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), pp 312–319

  28. Domingo-Ferrer J, Trujillo-Rasua R (2012) Microaggregation- and permutation-based anonymization of movement data[J]. Inf Sci 208:55–80

    Article  Google Scholar 

  29. Wang C, Yang J, Zhang J (2015) Privacy preserving algorithm based on trajectory location and shape similarity[J]. J Commun 36(2):144–157

    Google Scholar 

  30. Gudmundsson J, Valladares N (2015) A GPU approach to subtrajectory clustering using the fréchet distance[J]. IEEE Trans Parallel Distrib Syst 26(4):924–937

    Article  Google Scholar 

  31. Basse P, Guillouet B, Loubes J -M et al (2015) Review and perspective for distance based trajectory clustering[J]. Comput Sci 47(2):169–179

    Google Scholar 

  32. Keogh E, Pazzani M (2001) Derivative dynamic time warping[C]. In: Proceedings of the SIAM international conference on data mining, pp 1–11

  33. Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping[J]. Knowl Inf Syst 7 (3):358–386

    Article  Google Scholar 

  34. Zhang D, Lee K, Lee I (2018) Hierarchical trajectory clustering for spatio-temporal periodic pattern mining[J]. Expert Syst Appl 92:1–11

    Article  Google Scholar 

  35. Dominigo-Ferrer J, Sramka M, Trujillo-Rasua R (2010) Privacy-preserving publication of trajectories using microaggregation[C]. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on security and privacy in GIS and LBS - SPRINGL’10, pp 26–33

  36. Brinkhoff T (2002) A framework for generating network-based moving objects[J]. Geoinformatica 6(2):153–180

    Article  MATH  Google Scholar 

  37. Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) CRAWDAD dataset epfl/mobility (v. 2009-02-24)[EB/OL]. https://doi.org/10.15783/C7J010

  38. Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) A parsimonious model of mobile partitioned networks with clustering[C]. In: Proceedings of the 1st international conference on communication systems and NETworks, pp 1–10

  39. Laxhammar R, Falkman G (2014) Online learning and sequential anomaly detection in trajectories[J]. IEEE Trans Pattern Anal Mach Intell 36(6):1158–1173

    Article  Google Scholar 

  40. Han J, Kamber M, Pei J (2013) Data mining: concepts and techniques[M]. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  41. Amorim RCD, Hennig C (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors[J]. Inf Sci 324:126–145

    Article  MathSciNet  Google Scholar 

  42. Xie J, Gao H, Xie W et al (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Inf Sci 354(C):19–40

    Article  Google Scholar 

  43. Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: is a correction for chance necessary?[C]. In Proceedings of the 26th ACM international conference on machine learning, pp 1073–1080

Download references

Acknowledgements

The authors would like to thank the reviewers for their useful comments and suggestions for this paper. This work was supported by the National Natural Science Foundation of China (61702010, 61672039), the Key Program for University Top Talents of Anhui Province (gxbjZD2016011), the University Natural Science Research Program of Anhui Province (KJ2017A327), and the Science and Technology Project of Wuhu City (2016cxy04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglong Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Luo, Y., Chen, C. et al. Trajectory similarity clustering based on multi-feature distance measurement. Appl Intell 49, 2315–2338 (2019). https://doi.org/10.1007/s10489-018-1385-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1385-x

Keywords

Navigation