Skip to main content

Advertisement

Log in

A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper discusses a portfolio selection problem under the mean-variance-skewness framework wherein the security returns are obtained through evaluation of the experts instead of historical data. By treating security returns as the uncertain variables, an uncertain mean-variance-skewness model is proposed for portfolio selection under consideration of the transaction costs, bounds on holdings, cardinality of the portfolio, and minimum transaction lots constraints. To solve the resultant portfolio selection problem, which is an NP-Complete nonlinear integer programming problem, a hybrid solution method termed the FA-GA is developed by combining features of the firefly algorithm (FA) and genetic algorithm (GA). In the proposed method, the crossover and mutation operators of the GA are integrated into the FA to strike an optimal balance between the exploration and exploitation. A numerical example of portfolio selection is given to demonstrate effectiveness of the proposed model and solution algorithm. Furthermore, a detailed performance analysis and comparison are done to establish superiority of the proposed model and solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adcock CJ (2014) Mean-variance-skewness efficient surfaces, Stein’s lemma and the multivariate extended skewstudent distribution. Eur J Oper Res 234:392–401

    Article  MATH  Google Scholar 

  2. Arditti FD, Levy H (1975) Portfolio efficiency analysis in three moments: the multi-period case. J Finan 30:797–809

    Google Scholar 

  3. Arditti FD (1967) Risk and the required return on equity. J Finan 22:19–36

    Article  Google Scholar 

  4. Arnott RD, Wanger WH (1990) The measurement and control of trading costs. Finan Anal J 46:73–80

    Article  Google Scholar 

  5. Bacanin N, Tuba M Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint, Sci. World J. 2014 (2014) Article ID 721521, 16 pages

  6. Barak S, Abessi M, Modarres M (2013) Fuzzy turnover rate chance constraints portfolio model. Expert Syst Appl 228:141–147

    MathSciNet  MATH  Google Scholar 

  7. Baykasoǧlu A, Ozsoydan FB (2014) An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst Appl 41:3712–3725

    Article  Google Scholar 

  8. Bhattacharyya R, Chatterjee A, Kar S (2012) Mean-variance-skewness portfolio selection model in general uncertain environment. Indian J Appl Math 3:45–61

    Google Scholar 

  9. Bhattacharyya R, Chatterjee A, Kar S (2013) Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs. J Uncertainty Anal Appl 1:1–17

    Article  Google Scholar 

  10. Carlsson C, Fullér R, Majlender P (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets Syst 131:13–21

    Article  MathSciNet  MATH  Google Scholar 

  11. Chandrasekaran K, Sishaj SP, Padhy NP (2013) Binary real coded firefly algorithm for solving unit commitment problem. Inform Sci 249:67–84

    Article  Google Scholar 

  12. Chang TJ, Meade N, Beasley J, Sharaiha Y (2000) Heuristics for cardinality constrained portfolio optimization. Comput Oper Res 27:1271–1302

    Article  MATH  Google Scholar 

  13. Chen W (2015) Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A 429:125–139

    Article  MathSciNet  Google Scholar 

  14. Chen B, Lin Y, Zeng W, Xu H, Zhang D (2017) The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm. Appl Intell 47:505–525

    Article  Google Scholar 

  15. Chen W, Wang Y, Mehlawat MK (2017) A hybrid FA-SA algorithm for fuzzy portfolio selection with transaction costs. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2365-3

  16. Chen W, Zhang WG (2010) The admissible portfolio selection problem with transaction costs and an improved PSO algorithm. Physica A 389:2070–2076

    Article  Google Scholar 

  17. Chen W, Wang Y, Zhang J, Lu S (2017) Uncertain portfolio selection with high-order moments. J Intell Fuzzy Syst 33:1397–1411

    Article  MATH  Google Scholar 

  18. Chunhachinda P, Dandapani K, Hamid S, Prakash AJ (1997) Portfolio selection and skewness: evidence from international stock markets. J Bank Financ 21:143–167

    Article  Google Scholar 

  19. Deb K (2010) An efficient constraint handling method for genetical gorithms. Comput Meth Appl Mech Eng 186:311– 338

    Article  Google Scholar 

  20. Fister I, Fister Jr.I., Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34– 46

    Article  Google Scholar 

  21. Fister I, Yang X-S, Brest J, Fister Jr I (2013) Memetic self-adaptive firefly algorithm. In: Yang X-S, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (eds), Swarm Intell Bio-Inspired Comput: Theory Appl. Elsevier, pp 73–102

  22. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci 18:89–98

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao Y (2011) Shortest path problem with uncertain arc lengths. Comput Math Appl 62:2591–2600

    Article  MathSciNet  MATH  Google Scholar 

  24. Gupta P, Mittal G, Mehlawat MK (2013) Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insur Math Econ 52:190–203

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta P, Mehlawat MK, Inuiguchi M, Chandra S (2014) Fuzzy portfolio optimization: advances in hybrid multi-criteria methodologies studies in fuzziness and soft computing, vol 316. Springer, Heidelberg

    Book  MATH  Google Scholar 

  26. Golmakani HR, Fazel M (2011) Constrained portfolio selection using particle swarm optimization. Expert Syst Appl 38:8327–8335

    Article  Google Scholar 

  27. Horng M (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39:1078–1091

    Article  Google Scholar 

  28. Huang X (2010) Portfolio analysis: from probabilistic to credibilistic and uncertain approaches. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  29. Huang X (2011) Mean-risk model for uncertain portfolio selection. Fuzzy Optim Decis Making 10:71–89

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang X (2012) A risk index model for portfolio selection with returns subject to experts’ estimations. Fuzzy Optim Decis Making 11:451–463

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang X (2012) Mean-variance models for portfolio selection subject to experts’ estimations. Expert Syst Appl 39:5887–5893

    Article  Google Scholar 

  32. Huang X, Zhao T, Kudratova S (2016) Uncertain mean-variance and mean-semivariance models for optimal project selection and scheduling. Knowl-Based Syst 93:1–11

    Article  Google Scholar 

  33. Khadwilard A, Chansombat S, Thepphakorn T, Thapatsuwan P, Chainate W, Pongcharoen P (2012) Application of Firefly Algorithm and its parameter setting for job shop scheduling. Neurocomputing 8:49–58

    Google Scholar 

  34. Konno H, Shirakawa H, Yamazaki H (1993) mean-absolute deviation-skewness portfolio optimization model, A. Ann Oper Res 45:205–220

    Article  MathSciNet  MATH  Google Scholar 

  35. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag Sci 37:519–531

    Article  Google Scholar 

  36. Konno H, Suzuki K (1995) A mean-variance-skewness optimization model. Ann Oper Res 38:173–187

    MATH  Google Scholar 

  37. Krink T, Paterlini S (2011) Multiobjective optimization using differential evolution for real-world portfolio optimization. Comput Manag Sci 8:157–179

    Article  MathSciNet  Google Scholar 

  38. Lai T (1991) Portfolio selection with skewness: A multipleobjective approach. Rev Quant Finan Account 1:293–305

    Article  Google Scholar 

  39. Leung MT, Daouk H, Chen AS (2001) Using investment portfolio returns to combine forecasts: a multi-objective approach. Eur J Oper Res 34:84–102

    Article  MATH  Google Scholar 

  40. Long NC, Meesad P, Hunger H (2015) A highly accurate firefly based algorithm for heart disease prediction. Expert Syst Appl 42:8221–8231

    Article  Google Scholar 

  41. Li X, Qin Z (2014) Interval portfolio selection models within the framework of uncertainty theory. Econ Model 41:338–344

    Article  Google Scholar 

  42. Liu B (2007) Uncertainty theory, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  43. Liu B (2009) Theory and practice of uncertain programming, 2nd edn. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  44. Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer-Verlag, Berlin

    Book  Google Scholar 

  45. Liu B (2012) Why is there a need for uncertainty theory? J Uncertain Syst 6:3–10

    Google Scholar 

  46. Liu SC, Wang S, Qiu WH (2003) A mean-variance-skewness model for portfolio selection with transaction costs. Int J Syst Sci 34:128–144

    MathSciNet  MATH  Google Scholar 

  47. Liu YJ, Zhang WG (2013) Fuzzy portfolio optimization model under real constraints. Insur Math Econ 53:704–711

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu YJ, Zhang WG (2015) multi-period fuzzy portfolio optimization model with minimum transaction lots, A. Eur J Oper Res 242:933–941

    Article  MathSciNet  MATH  Google Scholar 

  49. Lwin K, Qu R (2013) A hybrid algorithm for constrained portfolio selection problems. Appl Intell 39:251–266

    Article  Google Scholar 

  50. Mansini R, Speranza MG (1999) Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur J Oper Res 114:219–233

    Article  MATH  Google Scholar 

  51. Markowitz H (1952) Portfolio selection. J Finan 7:77–91

    Google Scholar 

  52. Mehlawat MK, Gupta P (2014) Credibility-based fuzzy mathematical programming model for portfolio selection under uncertainty. Int J Inform Tech Decis Making 13:101–135

    Article  Google Scholar 

  53. Mehlawat MK, Gupta P (2014) Fuzzy chance-constrained multiobjective portfolio selection model. IEEE Trans Fuzzy Syst 22:653–671

    Article  Google Scholar 

  54. Mehlawat MK (2016) Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Inform Sci 345:9–26

    Article  Google Scholar 

  55. Moral-Escudero R, Ruiz-Torrubiano R, Suarez A (2006) Selection of optimal invest-ment portfolios with cardinality constraints. Proceedings of the IEEE WorldCongress on Evolutionary Computation, pp 2382–2388

  56. Nazemi A, Abbasi B, Omidi F (2015) Solving portfolio selection models with uncertain returns using an artificial neural network scheme. Appl Intell 42:609–621

    Article  Google Scholar 

  57. Perold AF (1984) Large-scale portfolio optimization. Manag Sci 30:1143–1160

    Article  MathSciNet  MATH  Google Scholar 

  58. Prakash AJ, Chang C, Pactwa TE (2003) Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets. J Bank Financ 27:1375–1390

    Article  Google Scholar 

  59. Qin Z, Kar S (2013) Single-period inventory problem under uncertain environment. Appl Math Comput 219:9630–9638

    MathSciNet  MATH  Google Scholar 

  60. Qin Z, Kar S, Zheng H (2016) Uncertain portfolio adjusting model using semiabsolute deviation. Soft Comput 20:717–725

    Article  MATH  Google Scholar 

  61. Rahmani A, MirHassani SA (2014) A hybrid Firefly-Genetic Algorithm for the capacitated facility location problem. Inf Sci 283:70–78

    Article  MathSciNet  MATH  Google Scholar 

  62. Rubinstein ME (1973) A comparative static analysis of risk premiums. J Bank Financ 46:605–615

    Google Scholar 

  63. Samuelson P (1975) The fundamental approximation theorem of portfolio analysis in terms of means, variances, and higher moments. Rev Econ Stud 37:215–220

    Google Scholar 

  64. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evol Comput 1:164–171

    Article  Google Scholar 

  65. Simaan Y (1997) Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model. Manag Sci 4:1437–1446

    Article  Google Scholar 

  66. Soleimani H, Golmakani HR, Salimi MH (2009) Markowitzbased portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst Appl 36:5058–5063

    Article  Google Scholar 

  67. Speranza MG (1993) Linear programming models for portfolio optimization. J Finan 14:107–123

    Google Scholar 

  68. Speranza MG (1996) A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Comput Oper Res 23:433–441

    Article  MATH  Google Scholar 

  69. di Tollo G, Roli A (2008) Metaheuristics for the portfolio selection problem. Expert Syst Appl 5:13–35

    MathSciNet  MATH  Google Scholar 

  70. Tuba M, Bacanin N (2014) Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem. Appl Math Inf Sci 8:2831–2844

    Article  MathSciNet  Google Scholar 

  71. Verma OP, Aggarwal D, Patodi T (2016) Opposition and dimensional based modified firefly algorithm. Expert Syst Appl 44:168–176

    Article  Google Scholar 

  72. Vercher E, Bermúdez JD (2015) Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Syst Appl 42:7121–7131

    Article  Google Scholar 

  73. Woodside-Oriakhi M, Lucas C, Beasley JE (2011) Heuristic algorithms for the cardinality constrained efficient frontier. Eur J Oper Res 213:538–550

    Article  MathSciNet  MATH  Google Scholar 

  74. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, UK

    Google Scholar 

  75. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundationsand Applications, SAGA, Lecture Notes in Computer Sciences, vol 5792, pp 169–178

  76. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisaion. Int J Bio-Inspired Comput 2:78–84

    Article  Google Scholar 

  77. Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29:175–184

    Article  Google Scholar 

  78. Yang X-S, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1:36–50

    Article  Google Scholar 

  79. Yao K (2014) A formula to calculate the variance of uncertain variable. Soft Comput 19:2947–2953

    Article  MATH  Google Scholar 

  80. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi MR (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Math Comput 13:2144–2158

    Google Scholar 

  81. Yu L, Wang S, Lai KK (2008) Neural network-based mean-variance-skewness model for portfolio selection. Comput Oper Res 35:34–46

    Article  MATH  Google Scholar 

  82. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  83. Zhang B, Peng J, Li S (2015) Uncertain programming models for portfolio selection with uncertain returns. Int J Syst Sci 46:2510–2519

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhang WG, Zhang X, Chen Y (2011) Portfolio adjusting optimization with added assets and transaction costs based on credibility measures. Insur Math Econ 49:353–360

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are thankful to the Editor-in-Chief, associate editor, and the anonymous referees for their valuable suggestions to improve presentation of the paper. The research of first author is supported by the National Natural Science Foundation of China (No. 71720107002), and by a research grant from the Quantitative Finance Research Center of School of Information, Capital University of Economics and Business. The third and fourth authors acknowledge financial support through DST PURSE Phase-II Grant and Research & Development Grant from the University of Delhi, Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Y., Gupta, P. et al. A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints. Appl Intell 48, 2996–3018 (2018). https://doi.org/10.1007/s10489-017-1124-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1124-8

Keywords

Navigation