Skip to main content
Log in

Assessment of force models on finite-sized particles at finite Reynolds numbers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method (IBPM) in the turbulent open-channel flow by direct numerical simulation (DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LUNDELL, F., SODERBERG, L. D., and ALFREDSSON, P. H. Fluid mechanics of papermaking. Annual Review of Fluid Mechanics, 43, 195–217 (2011)

    Article  Google Scholar 

  2. KHAN, A. A., JONG, W. D., JANSENS, P. J., and SPLIETHOFF, H. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology, 90(1), 21–50 (2009)

    Article  Google Scholar 

  3. CREYSSELS, M., DUPONT, P., EL MOCTAR, A. O., VALANCE, A., CANTAT, I., JENKINS, J. T., PASINI, J. M., and RASMUSSEN, K. R. Saltating particles in a turbulent boundary layer: experiment and theory. Journal of Fluid Mechanics, 625, 47–74 (2009)

    Article  Google Scholar 

  4. SEBASTIAN, B. and DITTRICH, P. S. Microfluidics to mimic blood flow in health and disease. Annual Review of Fluid Mechanics, 50, 483–504 (2018)

    Article  MathSciNet  Google Scholar 

  5. MAXEY, M. R. and RILEY, J. J. Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883–889 (1983)

    Article  Google Scholar 

  6. AUTON, T. R., HUNT, J. C. R., and PRUDHOMME, M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics, 197, 241–257 (1988)

    Article  MathSciNet  Google Scholar 

  7. SAFFMAN, P. G. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22, 385–400 (1965)

    Article  Google Scholar 

  8. LOTH, E. and DORGAN, A. J. An equation of motion for particles of finite Reynolds number and size. Environmental Fluid Mechanics, 9(2), 187–206 (2009)

    Article  Google Scholar 

  9. SCHILLER L. and NAUMANN, A. Z. Über die grundlegenden Berechungen bei der Schwerkraftaufbereitung. Zeitschrift des Vereines deutscher Ingenieure, 77, 318–320 (1933)

    Google Scholar 

  10. CHALLABOTLA, N. R., ZHAO, L. H., and ANDERSSON, H. I. Orientation and rotation of inertial disk particles in wall turbulence. Journal of Fluid Mechanics, 766, R2 (2015)

    Article  MathSciNet  Google Scholar 

  11. ZHAO, L. H., CHALLABOTLA, N. R., ANDERSSON, H. I., and VARIANO, E. A. Rotation of nonspherical particles in turbulent channel flow. Physical Review Letters, 115(24), 244501 (2015)

    Article  Google Scholar 

  12. MARCHIOLI, C., FANTONI, M., and SOLDATI, A. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Physics of Fluids, 22, 033301 (2010)

    Article  Google Scholar 

  13. WANG, X., ZHENG, X., and WANG, P. Direct numerical simulation of particle-laden plane turbulent wall jet and the influence of Stokes number. International Journal of Multiphase Flow, 92, 82–92 (2017)

    Article  MathSciNet  Google Scholar 

  14. PAN, M., LI, Q. X., TANG, S., and DONG, Y. H. Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method. Applied Mathematics and Mechanics (English Edition), 39(4), 477–488 (2018) https://doi.org/10.1007/s10483-018-2316-8

    Article  MathSciNet  Google Scholar 

  15. BALACHANDAR, S. and EATON, J. K. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133 (2010)

    Article  Google Scholar 

  16. PAN, Y. and BANERJEE, S. Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733–2755 (1996)

    Article  Google Scholar 

  17. SHAO, X., WU, T., and YU, Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 693, 319–344 (2012)

    Article  MathSciNet  Google Scholar 

  18. KIDANEMARIAM, A. G. and UHLMANN, M. Direct numerical simulation of pattern formation in subaqueous sediment. Journal of Fluid Mechanics, 750, R2 (2014)

    Article  Google Scholar 

  19. WANG, L. P., PENG, C., GUO, Z., and YU, Z. Flow modulation by finite-size neutrally buoyant particles in a turbulent channel flow. Journal of Fluids Engineering, 138(4), 041306 (2016)

    Article  Google Scholar 

  20. PICANO, F., BREUGEM, W. P., and BRANDT, L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. Journal of Fluid Mechanics, 764, 463–487 (2015)

    Article  MathSciNet  Google Scholar 

  21. COSTA, P., PICANO, F., BRANDT, L., and BREUGEM, W. P. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. Journal of Fluid Mechanics, 843, 450–478 (2018)

    Article  MathSciNet  Google Scholar 

  22. COSTA, P., BRANDT, L., and PICANO, F. Interface-resolved simulations of small inertial particles in turbulent channel flow. Journal of Fluid Mechanics, 883, A54 (2020)

    Article  MathSciNet  Google Scholar 

  23. ZHU, C., YU. Z., SHAO, X., and DENG, J. Interface-resolved numerical simulations of particle-laden turbulent flows in a vertical channel filled with Bingham fluids. Journal of Fluid Mechanics, 883, A43 (2020)

    Article  MathSciNet  Google Scholar 

  24. COSTA, P., PICANO, F., BRANDT, L., and BREUGEM, W. P. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Physics Review Letters, 117(13), 134501 (2016)

    Article  Google Scholar 

  25. KIDANEMARIAM, A. G. and UHLMAN, M. Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. Journal of Fluid Mechanics, 818, 716–743 (2017)

    Article  MathSciNet  Google Scholar 

  26. HORNE, W. J. and MAHESH, K. A massively-parallel, unstructured overset method to simulate moving bodies in turbulent flows. Journal Computational Physics, 397, 108790 (2019)

    Article  MathSciNet  Google Scholar 

  27. ELGHOBASHI, S. and TRUESDELL, G. C. On the two-way interaction between homogeneous turbulence and dispersed solid particles, I, turbulence modification. Physics of Fluids A: Fluid Dynamics, 5(7), 1790–1801 (1993)

    Article  Google Scholar 

  28. UHLMANN, M. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209(2), 448–476 (2005)

    Article  MathSciNet  Google Scholar 

  29. BREUGEM, W. P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. Journal of Computational Physics, 231(13), 4469–4498 (2012)

    Article  MathSciNet  Google Scholar 

  30. LI, R. Y., CUI, Z. W., HUANG, W. X., ZHAO, L. H., and XU, C. X. On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica, 230(2), 449–467 (2019)

    Article  MathSciNet  Google Scholar 

  31. PESKIN, C. S. The immersed boundary method. Acta Numerica, 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  32. KIM, K., BAEK, S. J., and SUNG, H. J. An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 38(2), 125–138 (2002)

    Article  Google Scholar 

  33. LI, R. Y., XIE, C. M., HUANG, W. X., and XU, C. X. An efficient immersed boundary projection method for flow over complex/moving boundaries. Computers and Fluids, 140, 122–135 (2016)

    Article  MathSciNet  Google Scholar 

  34. COSTA, P., BOERSMA, B. J., WESTERWEEL, J., and BREUGEM, W. P. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 92(5), 053012 (2015)

    Article  MathSciNet  Google Scholar 

  35. ZENG, L. Y., BALACHANDAR, S., PAUL, F., and NAJJAR, F. Interactions of a stationary finite-sized particle with wall turbulence. Journal of Fluid Mechanics, 594, 271–305 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixi Huang.

Additional information

Citation: LI, R. Y., HUANG, W. X., ZHAO, L. H., and XU, C. X. Assessment of force models on finite-sized particles at finite Reynolds numbers. Applied Mathematics and Mechanics (English Edition), 41(6), 953–966 (2020) https://doi.org/10.1007/s10483-020-2621-9

Project supported by the National Natural Science Foundation of China (Nos. 11490551, 11772172, and 11702158)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Huang, W., Zhao, L. et al. Assessment of force models on finite-sized particles at finite Reynolds numbers. Appl. Math. Mech.-Engl. Ed. 41, 953–966 (2020). https://doi.org/10.1007/s10483-020-2621-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2621-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation