Skip to main content
Log in

New regularization method and iteratively reweighted algorithm for sparse vector recovery

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Motivated by the study of regularization for sparse problems, we propose a new regularization method for sparse vector recovery. We derive sufficient conditions on the well-posedness of the new regularization, and design an iterative algorithm, namely the iteratively reweighted algorithm (IR-algorithm), for efficiently computing the sparse solutions to the proposed regularization model. The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length. Finally, we present numerical examples to illustrate the features of the new regularization and algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TIKHONOV, A. N. On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk SSSR, 151, 501–504 (1963)

    MathSciNet  Google Scholar 

  2. BENJAMIN, S. and THORSTEN, H. Higher order convergence rates for Bregman iterated variational regularization of inverse problems. Numerische Mathematik, 141, 215–252 (2018)

    MathSciNet  MATH  Google Scholar 

  3. ZHU, W., SHU, S., and CHENG, L. Z. An efficient proximity point algorithm for total-variation-based image restoration. Advances in Applied Mathematics and Mechanics, 6, 145–164 (2014)

    Article  MathSciNet  Google Scholar 

  4. CLASON, C., KRUSE, F., and KUNISH, K. Total variation regularization of multi-material topology optimization. ESAIM: Mathematical Modelling and Numerical Analysis, 52, 275–303 (2018)

    Article  MathSciNet  Google Scholar 

  5. ZHANG, H., CHENG, L. Z., and ZHU, W. Nuclear norm regularization with a low-rank constraint for matrix completion. Inverse Problems, 26, 115009 (2010)

    Article  MathSciNet  Google Scholar 

  6. DONG, J., XUE, Z. C., GUAN, J., HAN, Z. F., and WANG, W. W. Low rank matrix completion using truncated nuclear norm and sparse regularizer. Signal Processing: Image Communication, 68, 76–87 (2018)

    Google Scholar 

  7. USEVICH, K. and COMON, P. Hankel low-rank matrix completion: performance of the nuclear norm relaxation. IEEE Journal of Selected Topics in Signal Processing, 10, 637–646 (2017)

    Article  Google Scholar 

  8. ZHU, W., SHU, S., and CHENG, L. Z. First-order optimality condition of basis pursuit denoise problem. Applied Mathematics and Mechanics (English Edition), 35(10), 1345–1352 (2014) https://doi.org/10.1007/s10483-014-1860-9

    Article  MathSciNet  Google Scholar 

  9. ZHU, W., SHU, S., and CHENG, L. Z. Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data. Applied Mathematics and Mechanics (English Edition), 35(2), 259–268 (2014) https://doi.org/10.1007/s10483-014-1788-6

    Article  MathSciNet  Google Scholar 

  10. BREDIES, K. and LORENZ, D. A. Regularization with non-convex separable constraints. Inverse Problem, 25, 085011 (2009)

    Article  MathSciNet  Google Scholar 

  11. GRASMAIR, M., HALTMEIER, M., and SCHERZER, O. Sparse regularization with lq penalty term. Inverse Problems, 24, 055020 (2008)

    Article  MathSciNet  Google Scholar 

  12. ENGL, H. W. and RAMLAU, R. Regularization of inverse problems. Encyclopedia of Applied and Computational Mathematics, Springer, Heidelberg (2015)

    Google Scholar 

  13. ARJOUNE, Y., KAABOUCH, N., GHAZI, H. E., and TAMTAOUI, A. Compressive sensing: performance comparison of sparse recovery algorithms. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Las Vegas (2017)

    Google Scholar 

  14. DAN, W. and ZHANG, Z. Generalized sparse recovery model and its neural dynamical optimization method for compressed sensing. Circuits Systems and Signal Processing, 36, 4326–4353 (2017)

    Article  MathSciNet  Google Scholar 

  15. CHARTRAND, R. and STANEVA, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24, 657–682 (2008)

    Article  MathSciNet  Google Scholar 

  16. CHARTRAND, R. and YIN, W. T. Iteratively reweighted algorithms for compressive sensing. International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), 3869–3872 (2008)

    Chapter  Google Scholar 

  17. CHARTRAND, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14, 707–710 (2007)

    Article  Google Scholar 

  18. GE, D., JIANG, X., and YE, Y. A note on complexity of Lp minimization. Mathematics Programming, 129, 285–299 (2011)

    Article  Google Scholar 

  19. FOUCART, S. and LAI, M. J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q ≤ 1. Applied and Computational Harmonic Analysis, 26, 395–407 (2009)

    Article  MathSciNet  Google Scholar 

  20. FOUCART, S. A note on guaranteed sparse recovery via l1-minimization. Applied and Computational Harmonic Analysis, 29, 97–103 (2010)

    Article  MathSciNet  Google Scholar 

  21. CANDÈS, E. J. and PLAN, Y. A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory, 57, 7235–7254 (2010)

    Article  MathSciNet  Google Scholar 

  22. SUN, Q. Y. Sparse approximation property and stable recovery of sparse signals from noisy measurements. IEEE Transactions on Signal Processing, 59, 5086–5090 (2011)

    Article  MathSciNet  Google Scholar 

  23. FAZEL, M. Matrix Rank Minimization with Applications, Ph.D. dissertation, Stanford University, California (2002)

    Google Scholar 

  24. CANDÈS, E. J., WAKIN, M. B., and BOYD, S. P. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14, 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  25. DAUCHEBIES, I., DEVORE, R., FORNASIER, M., and GUNTURK, C. S. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63, 1–38 (2010)

    Article  MathSciNet  Google Scholar 

  26. MOURAD, N. and REILLY, J. F. Minimizaing nonconvex functions for sparse vector reconstruction. IEEE Transactions on Signal Processing, 58, 3485–3496 (2010)

    Article  MathSciNet  Google Scholar 

  27. NEEDELL, D. Noisy signal recovery via iterative reweighted L1-minimization. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, IEEE, Pacific Grove (2009)

    Google Scholar 

  28. XU, W. Y., KHAJEHNEJAD, M. A., AVESTIMEHR, S., and HASSIBI, B. Breaking through the thresholds: an analysis for iterative reweighted l1 minimization via the Grassmann angle framework. ICASSP 2010: IEEE International Conference on Acoustics, Speech and Signal, IEEE, Texas (2009)

    Google Scholar 

  29. CHEN, X. J., XU, F., and YE, Y. Lower bound theory of nonzero entries in solutions of l2lp minimization. SIAM Journal on Scientific Computing, 32, 2832–2852 (2010)

    Article  MathSciNet  Google Scholar 

  30. LAI, M. J. and WANG, J. An unconstrained lq minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems. SIAM Journal on Optimization, 21, 82–101 (2011)

    Article  MathSciNet  Google Scholar 

  31. MOL, C. D., VITO, E. D., and ROSASCO, L. Elastic-net regularization in learning theory. Journal of Complexity, 25, 201–230 (2009)

    Article  MathSciNet  Google Scholar 

  32. JIN, B. T., LORENZ, D. A., and SCHIFFLER, S. Elastic-net regularization: error estimates and active set methods. Inverse Problems, 25, 115022 (2009)

    Article  MathSciNet  Google Scholar 

  33. ZOU, H. and HASTIE, T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67, 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  34. CAI, J. F., OSHER, S., and SHEN, Z. W. Linearized Bregman iterations for compressed sensing. Mathematics of Computation, 78, 1515–1536 (2009)

    Article  MathSciNet  Google Scholar 

  35. YIN, W. Analysis and generalizations of the linearized Bregman method. SIAM Journal on Imaging Sciences, 3, 856–877 (2010)

    Article  MathSciNet  Google Scholar 

  36. ZHANG, H., CHENG, L. Z., and ZHU, W. A lower bound guaranteeing exact matrix completion via singular value thresholding algorithm. Applied and Computational Harmonic Analysis, 31, 454–459 (2011)

    Article  MathSciNet  Google Scholar 

  37. BERTSEKAS, D. P., NEDIĆC, A., and OZDAGLAR, A. E. Convex Analysis and Optimization, Athena Scietific and Tsinghua University Press, Beijing (2006)

    Google Scholar 

  38. YUAN, Z. Y. and WANG, H. X. Phase retrieval via reweighted wirtinger flow method. Applied Optics, 56, 2418–2427 (2017)

    Article  Google Scholar 

  39. HARDY, G. H., LITTLEWOOD, J. E., and PÓLYA, G. Inequalities, Posts and Telecom Press, Beijing (2010)

    MATH  Google Scholar 

  40. FORNASIER, M. Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyter, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to Prof.Mingjun LAI for many enlightening discussions with us on lq minimization, to Prof.Rong HUANG for his guidance during my post-doctoral research period, to Dr.Yangyang XU for his contributions to Theorem 3 and lone-term communication on sparse vector recovery with nonconvex models, and to Dr.Housen LI for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61603322) and the Research Foundation of Education Bureau of Hunan Province of China (No. 16C1542)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhang, H. & Cheng, L. New regularization method and iteratively reweighted algorithm for sparse vector recovery. Appl. Math. Mech.-Engl. Ed. 41, 157–172 (2020). https://doi.org/10.1007/s10483-020-2561-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2561-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation