Skip to main content
Log in

Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Propagation of a torsional wave in a doubly-layered half-space structure of an initially stressed heterogeneous viscoelastic layer sandwiched between a layer and a half-space of heterogeneous dry sandy media is studied. A closed form complex expression for the velocity profile is obtained under effective boundary conditions. The real part of the complex expression provides a dispersion equation, and the imaginary part yields a damping equation. The derived dispersion and damped equations are in well agreement with the classical Love wave condition. In addition, to study the effect of the dissipation factor, the attenuation coefficient, the sandy parameters, the initial stress, the heterogeneity parameters, and the thickness ratio parameter, some noteworthy contemplations are made by numerical calculations and graphical visuals. The results of this paper may present a deeper insight into the behaviour of propagation phenomena in heterogeneous viscoelastic and heterogeneous dry sandy materials that can provide a theoretical guide for the design and optimization in the field of earthquake engineering. The study also reveals that the presence of a damping part due to viscoelasticity affects the torsional wave propagation significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, A. E. H. Mathematical Theory of Elasticity, Cambridge University Press, Cambridge (1920)

    MATH  Google Scholar 

  2. Ewing, W. M., Jardetzky, W. S., and Press, F. Elastic Waves in Layered Media, McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  3. Biot, M. A. Mechanics of Incremental Deformations, John Wiley and Sons, New York (1965)

    Google Scholar 

  4. Gubbins, D. Seismology and Plate Tectonics, Cambridge University Press, Cambridge (1990)

    Google Scholar 

  5. Udias, A. Principles of Seismology, Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Moresi, L., Mühlhaus, H. B., and Dufour, F. Viscoelastic formulation for modelling of plate tectonics. Bifurcation and Localization in Soils and Rocks, Balkema, Rotterdam, 337–344 (2001)

    Google Scholar 

  7. Singh, A. K. and Lakshman, A. Effect of loosely bonded undulated boundary surfaces of doubly layered half-space on the propagation of torsional wave. Mechanics Research Communications, 73, 91–106 (2016)

    Article  Google Scholar 

  8. Kakar, R., Kaur, K., and Gupta, K. C. Torsional vibrations in a non-homogeneous medium over a viscoelastic dissipative medium. International Journal of Pure and Applied Sciences and Technology, 14, 39–49 (2013)

    Google Scholar 

  9. Kumari, P. and Sharma, V. K. Propagation of torsional waves in a viscoelastic layer over an inhomogeneous half space. Acta Mechanica, 225, 1673–1684 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dey, S., Gupta, A. K., and Gupta, S. Propagation of torsional surface waves in viscoelastic medium. International Journal for Numerical and Analytical Methods in Geomechanics, 20, 209–213 (1996)

    Article  MATH  Google Scholar 

  11. Tanimoto, N. An analysis of combined longitudinal and torsional elastic-plastic-viscoplastic waves in a thin-walled tube. Journal of Solid Mechanics and Materials Engineering, 1, 1112–1127 (2007)

    Article  Google Scholar 

  12. Kumari, P., Sharma, V. K., and Modi, C. Torsional wave in a viscoelastic layer over a viscoelastic substratum of Voigt types. Journal of Earthquake Engineering, 20, 1278–1294 (2016)

    Article  Google Scholar 

  13. Kumari, P., Sharma, V. K., and Modi, C. Modeling of magnetoelastic shear waves due to point source in a viscoelastic crustal layer over an inhomogeneous viscoelastic half space. Waves in Random and Complex Media, 26, 101–120 (2015)

    Article  MathSciNet  Google Scholar 

  14. Sahu, S. A., Saroj, P. K., and Dewangan, N. SH-waves in viscoelastic heterogeneous layer over half-space with self-weight. Archive of Applied Mechanics, 84, 235–245 (2014)

    Article  MATH  Google Scholar 

  15. Kumar, S., Pal, P. C., and Bose, S. Propagation of SH-type waves in inhomogeneous anisotropic layer overlying an anisotropic viscoelastic half-space. International Journal of Engineering, Science and Technology, 6, 24–30 (2014)

    Article  Google Scholar 

  16. Chattopadhyay, A., Gupta, S., Kumari, P., and Sharma, V. K. Effect of point source and heterogeneity on the propagation of SH-waves in a viscoelastic layer over a viscoelastic half space. Acta Geophysica, 60, 119–139 (2012)

    Article  Google Scholar 

  17. Romeo, M. Interfacial viscoelastic SH-wave. International Journal of Solids and Structures, 40, 2057–2068 (2003)

    Article  MATH  Google Scholar 

  18. Cerven´y, V. Reflection/transmission laws for slowness vectors in viscoelastic anisotropic media. Studia Geophysica et Geodaetica, 51, 391–410 (2007)

    Article  Google Scholar 

  19. Manolis, G. D. and Shaw, R. P. Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity I: fundamental solutions. Soil Dynamics and Earthquake Engineering, 15, 119–127 (1996)

    Article  Google Scholar 

  20. Singh, A. K., Lakhsman, A., and Chattopadhyay, A. Effect of internal friction and the Lame ratio on stoneley wave propagation in viscoelastic media of order 1. International Journal of Geomechanics, 16, 04015090 (2015)

    Article  Google Scholar 

  21. Weiskopf, W. H. Stresses in soils under a foundation. Journal of the Franklin Institute, 239, 445–465 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chattaraj, R., Samal, S. K., and Debasis, S. On torsional surface wave in dry sandy crust laid over an inhomogeneous half space. Meccanica, 50, 1807–1816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vishwakarma, S. K. and Gupta, S. Existence of torsional surface waves in an Earth’s crustal layer lying over a sandy mantle. Journal of Earth System Science, 122, 1411–1421 (2013)

    Article  Google Scholar 

  24. Dey, S., Gupta, A. K., and Gupta, S. Effect of gravity and initial stress on torsional surface waves in dry sandy medium. Journal of Engineering Mechanics, 128, 1115–1118 (2002)

    Article  Google Scholar 

  25. Kundu, S., Saha, A., Gupta, S., and Manna, S. Propagation of torsional wave in a nonhomogeneous crustal layer over a dry sandy mantle. Meccanica, 50, 3029–3040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pal, A. K., Kalyani, V. K., and Kar, B. K. Energy partitions at a solid-sandy bilateral interface due to an incident antiplane shear wave. Proceeding of Indian National Science Academy, 52, 1390–1397 (1986)

    Google Scholar 

  27. Tomar, S. K. and Kaur, J. SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mechanica, 190, 1–28 (2007)

    Article  MATH  Google Scholar 

  28. Shekhar, S. and Parvez, I. A. Propagation of torsional surface waves in a double porous layer lying over a Gibson half space. Soil Dynamics and Earthquake Engineering, 80, 56–64 (2016)

    Article  Google Scholar 

  29. Vishwakarma, S. K., Gupta, S., and Kundu, S. Torsional wave propagation in a substratum over a dry sandy Gibson half-space. International Journal of Geomechanics, 14, 06014002 (2014)

    Article  Google Scholar 

  30. Bullen, K. E. The problem of the Earth’s density variation. Bulletin of the Seismological Society of America, 30, 225–234 (1940)

    Google Scholar 

  31. Birch, F. Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227–288 (1952)

    Article  Google Scholar 

  32. Dey, S., Gupta, A. K., and Gupta, S. Torsional surface waves in nonhomogeneous and anisotropic medium. The Journal of the Acoustical Society of America, 99, 2737–2741 (1996)

    Article  Google Scholar 

  33. Gupta, S., Vishwakarma, S. K., Majhi, D. K., and Kundu, S. Influence of linearly varying density and rigidity on torsional surface waves in inhomogeneous crustal layer. Applied Mathematics and Mechanics (English Edition), 33, 1239–1252 (2012) DOI 10.1007/s10483-012-1618-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Ke, L. L., Wang, Y. S., and Zhang, Z. M. Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dynamics and Earthquake Engineering, 26, 574–581 (2006)

    Article  Google Scholar 

  35. Ke, L. L., Wang, Y. S., and Zhang, Z. M. Propagation of Love waves in an inhomogeneous fluid saturated porous layered half-space with properties varying exponentially. Journal of Engineering Mechanics, 131, 1322–1328 (2005)

    Article  Google Scholar 

  36. Kakar, R. and Kakar, S. Love wave in a Voigt-type viscoelastic heterogeneous layer overlying heterogeneous viscoelastic half-space. International Journal of Geomechanics, 17, 06016009 (2017)

    Article  Google Scholar 

  37. Abd-Alla, A. M., Mahmoud, S. R., Abo-Dahab, S. M., and Helmy, M. I. Influences of rotation, magnetic field, initial stress, and gravity on Rayleigh waves in a homogeneous orthotropic elastic half-space. Applied Mathematical Sciences, 4, 91–108 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Abd-Alla, A. M., Abo-Dahab, S. M., and Al-Thamali, T. A. Love waves in a non-homogeneous orthotropic magneto-elastic layer under initial stress overlying a semi-infinite medium. Journal of Computational and Theoretical Nanoscience, 10, 10–18 (2013)

    Article  Google Scholar 

  39. Vishwakarma, S. K. and Xu, R. G-type dispersion equation under suppressed rigid boundary: analytic approach. Applied Mathematics and Mechanics (English Edition), 37, 501–512 (2016) DOI 10.1007/s10483-016-2048-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to convey their deep sense of indebtedness to Indian Institute of Technology (Indian School of Mines) Dhanbad for providing all necessary resources for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, P., Kundu, S. & Gupta, S. Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media. Appl. Math. Mech.-Engl. Ed. 38, 1313–1328 (2017). https://doi.org/10.1007/s10483-017-2239-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2239-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation