Skip to main content
Log in

Approximation schemes for r-weighted Minimization Knapsack problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Stimulated by salient applications arising from power systems, this paper studies a class of non-linear Knapsack problems with non-separable quadratic constrains, formulated in either binary or integer form. These problems resemble the duals of the corresponding variants of 2-weighted Knapsack problem (a.k.a., complex-demand Knapsack problem) which has been studied in the extant literature under the paradigm of smart grids. Nevertheless, the employed techniques resulting in a polynomial-time approximation scheme (PTAS) for the 2-weighted Knapsack problem are not amenable to its minimization version. We instead propose a greedy geometry-based approach that arrives at a quasi PTAS (QPTAS) for the minimization variant with boolean variables. As for the integer formulation, a linear programming-based method is developed that obtains a PTAS. In view of the curse of dimensionality, fast greedy heuristic algorithms are presented, additionally to QPTAS. Their performance is corroborated extensively by empirical simulations under diverse settings and scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In AC systems, the electric power is characterized by a complex number, where the real component is known as active power and the imaginary part reflects the reactive power. The combination of these two (i.e., magnitude of the complex-valued number) is called apparent power.

  2. Note that some of the case studies are omitted from Fig. 4 due to their close resemblance to the plotted ones.

References

  • Basu, S. (1999). New results on quantifier elimination over real closed fields and applications to constraint databases. Journal of the ACM, 46(4), 537–555.

    Article  Google Scholar 

  • Bretthauer, K. M., & Shetty, B. (2002). The nonlinear knapsack problem—Algorithms and applications. European Journal of Operational Research, 138(3), 459–472.

    Article  Google Scholar 

  • Chandra, A. K., Hirschberg, D. S., & Wong, C. K. (1976). Approximate algorithms for some generalized knapsack problems. Theoretical Computer Science, 3(3), 293–304.

    Article  Google Scholar 

  • Chau, C., Elbassioni, K. M., & Khonji, M. (2016). Truthful mechanisms for combinatorial allocation of electric power in alternating current electric systems for smart grid. ACM Transactions on Economics and Computation, 5(1), 7:1–7:29.

    Article  Google Scholar 

  • Chau, S. C., Elbassioni, K. M., & Khonji, M. (2014). Truthful mechanisms for combinatorial AC electric power allocation. In International conference on autonomous agents and multi-agent systems, AAMAS ’14 (pp. 1005–1012), Paris, France, 5–9 May 2014.

  • Csirik, J., Frenk, J. B. G., Labbé, M., & Zhang, S. (1991). Heuristic for the 0–1 min-knapsack problem. Acta Cybernetica, 10(1–2), 15–20.

    Google Scholar 

  • Elbassioni, K. M., & Nguyen, T. T. (2017). Approximation algorithms for binary packing problems with quadratic constraints of low cp-rank decompositions. Discrete Applied Mathematics, 230, 56–70.

    Article  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: W.H. Freeman.

    Google Scholar 

  • Hedengren, J. D. (2014). APMonitor Modeling Language. http://APMonitor.com. Accessed 18 Aug 2017.

  • Ibaraki, T., & Katoh, N. (1988). Resource allocation problems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Karapetyan, A., Khonji, M., Chau, C. K., Elbassioni, K., & Zeineldin, H. (2018). Efficient algorithm for scalable event-based demand response management in microgrids. IEEE Transactions on Smart Grid, 9(4), 2714–2725. https://doi.org/10.1109/TSG.2016.2616945.

    Article  Google Scholar 

  • Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.

    Book  Google Scholar 

  • Kellerer, H., & Strusevich, V. A. (2010). Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications. Algorithmica, 57(4), 769–795.

    Article  Google Scholar 

  • Kellerer, H., & Strusevich, V. A. (2012). The symmetric quadratic knapsack problem: approximation and scheduling applications. 4OR, 10(2), 111–161.

    Article  Google Scholar 

  • Khonji, M., Karapetyan, A., Elbassioni, K., & Chau, C. K. (2016). Complex-demand scheduling problem with application in smart grid. In Computing and combinatorics (pp. 496–509). Berlin: Springer.

  • Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. New York, NY: Wiley-Interscience.

    Google Scholar 

  • Pferschy, U., & Schauer, J. (2013). Approximating the quadratic knapsack problem on special graph classes. In Approximation and online algorithms—11th international workshop, WAOA 2013 (pp. 61–72), Sophia Antipolis, France, September 5–6, 2013, Revised selected papers.

  • Renegar, J. (1992). On the computational complexity of approximating solutions for real algebraic formulae. SIAM Journal on Computing, 21(6), 1008–1025.

    Article  Google Scholar 

  • Schrijver, A. (1986). Theory of linear and integer programming. New York: Wiley.

    Google Scholar 

  • Rader, D. J, Jr., & Woeginger, G. J. (2002). The quadratic 0–1 knapsack problem with series-parallel support. Operations Research Letters, 30(3), 159–166.

    Article  Google Scholar 

  • Woeginger, G. J. (2000). When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing, 12(1), 57–74.

    Article  Google Scholar 

  • Wood, A. J., & Wollenberg, B. F. (2012). Power generation, operation, and control. London: Wiley.

    Google Scholar 

  • Yu, L., & Chau, C. (2013). Complex-demand knapsack problems and incentives in AC power systems. In International conference on autonomous agents and multi-agent systems, AAMAS ’13 (pp. 973–980), Saint Paul, MN, USA, May 6–10, 2013.

Download references

Acknowledgements

We would like to thank the Editor and anonymous reviewers for their careful reading of our manuscript and their helpful comments that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Thanh Nguyen.

Appendix

Appendix

Proof of Fact 1

(i) Indeed,

$$\begin{aligned} \dfrac{(a+b)^T\xi }{\Vert a+b\Vert _2\Vert \xi \Vert _2}&= \dfrac{\Vert a\Vert _2}{\Vert a+b\Vert _2}\cdot \dfrac{a^T\xi }{\Vert a\Vert _2\Vert \xi \Vert _2}+\dfrac{\Vert b\Vert _2}{\Vert a+b\Vert _2}\cdot \dfrac{b^T\xi }{\Vert b\Vert _2\Vert \xi (s)\Vert _2}\\&\ge \dfrac{\Vert a\Vert _2+\Vert b\Vert _2}{\Vert a+b\Vert _2}\cdot (1-\varepsilon )\\&\ge 1-\varepsilon , \end{aligned}$$

by the triangular inequality.

(ii) Let \({\bar{a}}:=\frac{a}{\Vert a\Vert _2}\), \({\bar{b}}:=\frac{b}{\Vert b\Vert _2}\), and \({{\bar{\xi }}}:=\frac{\xi }{\Vert \xi \Vert _2}\). If \(a,b,\xi \) all lie in the same two-dimensional subspace, then the claim follows since the angle between a and b is no more than the sum of the angles between a and \(\xi \), and b and \(\xi \), which is at most is \(\cos ^{-1}((1-\varepsilon )^2-\varepsilon (2-\varepsilon ))\le \cos ^{-1}(1-4\varepsilon )\). Otherwise, let \({\bar{b}}={\widehat{b}}+{\tilde{b}}\) be the orthogonal decomposition of \({\bar{b}}\) with respect to the 2-dimensional subspace formed by the two vectors \({\bar{a}}\) and \(\bar{\xi }\), where \({\widehat{b}}\) is the projection of \({\bar{b}}\) into this space, and \({\tilde{b}}\) is the orthogonal component. Then

$$\begin{aligned} \frac{{\widehat{b}}^T\bar{\xi }}{\Vert {\widehat{b}}\Vert _2}=\frac{\bar{b}^T\bar{\xi }}{\Vert {\widehat{b}}\Vert _2}\ge \frac{1-\varepsilon }{\Vert \widehat{b}\Vert _2}\ge 1-\varepsilon , \end{aligned}$$

(since \(\Vert {\widehat{b}}\Vert _2\le \Vert \bar{b}\Vert _2=1\)), which also implies that \(\Vert {\widehat{b}}\Vert _2\ge 1-\varepsilon \). Since a, \({\widehat{b}}\), and \(\xi \) lie in the same subspace, it follows by the above argument that \(\frac{{\widehat{b}}^T\bar{a}}{\Vert {\widehat{b}}\Vert _2}\ge (1-4\varepsilon )\), and hence,

$$\begin{aligned} {\bar{b}}^T{\bar{a}}={\widehat{b}}^T{\bar{a}}\ge (1-4\varepsilon )\Vert \widehat{b}\Vert _2\ge (1-4\varepsilon )(1-\varepsilon ), \end{aligned}$$

implying the claim. \(\square \)

Proof of Fact 2

Since the statement is invariant under rotation, we may assume, w.l.o.g., that \(\eta =\mathbf{1}_j\), the jth-dimensional unit vector in \({\mathbb {R}}^r\). Write \(b:={\widehat{b}}+{\tilde{b}}\), where \({\tilde{b}}\) is the vector orthogonal to a in the subspace spanned by a and b. Then \(\Vert \mathtt{Pj}_{\eta }(b)\Vert _2=b^j\) is the jth component of b, and \(\Vert \mathtt{Pj}_{\eta }({\widehat{b}})\Vert _2={\widehat{b}}^j\). Since

$$\begin{aligned} \Vert {\widehat{b}}\Vert _2\ge \frac{a^T\widehat{b}}{\Vert a\Vert _2}=\frac{a^Tb}{\Vert a\Vert _2}\ge (1-5\varepsilon )\Vert b\Vert _2, \end{aligned}$$

it follows that

$$\begin{aligned} \Vert {\tilde{b}}\Vert _2= \sqrt{\Vert b\Vert _2^2-\Vert {\widehat{b}}\Vert _2^2}&\le \sqrt{5\varepsilon (2-5\varepsilon )}\Vert b\Vert _2\le \frac{\sqrt{5\varepsilon (2-5\varepsilon )}}{1-5\varepsilon }\Vert \widehat{b}\Vert _2\\&=\frac{\lambda \sqrt{5\varepsilon (2-5\varepsilon )}}{1-5\varepsilon }\Vert a\Vert _2. \end{aligned}$$

Since \(|b^j-{\widehat{b}}^j|=|{\tilde{b}}^j|\le \Vert {\tilde{b}}\Vert _2\), and \({\widehat{b}}=\lambda \Vert a\Vert _2 \cdot a\), the claim follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbassioni, K., Karapetyan, A. & Nguyen, T.T. Approximation schemes for r-weighted Minimization Knapsack problems. Ann Oper Res 279, 367–386 (2019). https://doi.org/10.1007/s10479-018-3111-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3111-9

Keywords

Navigation