Skip to main content
Log in

Using managerial revenue and cost estimates to value early stage real option investments

  • Original - OR Modeling/Case Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Real options analysis is widely recognized as a superior method for valuing projects with managerial flexibilities. Yet, its adoption remains limited due to varied difficulties in its implementation. In this work, a real options approach that utilizes managerial cash-flow estimates to value early stage project investments is proposed. Our model is based on the assumption that managers can provide pessimistic, likely and optimistic sales and gross margin percent estimates. A market sector indicator is introduced, which is assumed to be correlated to a tradeable market index, which drives the project’s sales estimates. Another indicator, assumed partially correlated to the sales indicator drives the gross margin percent estimates. In this way a cash-flow process can be modelled that is partially correlated to a traded market index. This provides the mechanism for valuing real options of the cash-flow in a financially consistent manner. The method requires minimal subjective input of model parameters and is very easy to implement, based on simple managerial estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. As we discuss in Sect. 4.1, the risk-neutral MMM is a particular risk-neutral measure which produces variance minimizing hedges.

  2. Technically, the correlation of the gross margin percent sector indicator to the sales sector indicator is also required, but the historical correlation can be easily obtained, and usually, the sensitivity of the valuation to this parameter is small.

  3. We use an asterisk to emphasize that these distributions are provided by the manager.

  4. The results will not be exact because, as discussed previously, our method provides for a natural correlation among the cash-flows whereas Datar and Mathews utilize an adhoc approach.

  5. The case \(\mu =r\) is excluded since a risky investment has an expected return larger than the risk-free rate.

References

  • Amram, M., & Kulatilaka, N. (1999). Real options: Managing strategic investment in an uncertain world. Massachusetts: Harvard Business School Press.

    Google Scholar 

  • Barton, K., & Lawryshyn, Y. A. (2011). Integrating real options with managerial cash flow estimates. Engineering Economist, 56(3), 254–273.

    Article  Google Scholar 

  • Bennouna, K., Meredith, G., & Marchant, T. (2010). Improved capital budgeting decision making: Evidence from canada. Management Decision, 48(2), 225–247.

    Article  Google Scholar 

  • Berk, J., Green, R., & Naik, V. (2004). Valuation and return dynamics of new ventures. The Review of Financial Studies, 17(1), 1–35.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  Google Scholar 

  • Block, S. (2007). Are real options actually used in the real world? Engineering Economist, 52(3), 255–267.

    Article  Google Scholar 

  • Borison, A. (2005). Real options analysis: Where are the emperor’s clothes? Journal of Applied Corporate Finance, 17(2), 17–31.

    Article  Google Scholar 

  • Brandao, L., & Dyer, J. (2005). Decision analysis and real options: A discrete time approach to real option valuation. Annals of Operations Research, 135, 21–39.

    Article  Google Scholar 

  • Brennan, M. J., & Schwartz, S. (1985). Evaluating natural resource investments. Journal of Business, 58(2), 135–157.

    Article  Google Scholar 

  • Cerny, A. (1999). Minimal martingale measure, capm, and representative agent pricing in incomplete markets. Technical report, Cass Business School. Available at SSRN: http://ssrn.com/abstract=851188.

  • Chen, T., Zhang, J., & Lai, K.-K. (2009). An integrated real options evaluating model for information technology projects under multiple risks. International Journal of Project Management, 27, 776–786.

    Article  Google Scholar 

  • Collan, M., Fullér, R., & Mezei, J. (2009). A fuzzy pay-off method for real option valuation. Journal of Applied Mathematics and Decision Sciences, 2009, 1–14.

    Article  Google Scholar 

  • Copeland, T., & Antikarov, V. (2001). Real options: A practitioner’s guide. New York: Norton and Company: W. W.

    Google Scholar 

  • Copeland, T., & Tufano, P. (2004). A real-world way to manage real options. Harvard Business Review, 82(3), 90–99.

    Google Scholar 

  • Datar, V., & Mathews, S. (2004). European real options: An intuitive algorithm for the black- scholes formula. Journal of Applied Finance, 14(1), 45–51.

    Google Scholar 

  • Dixit, A., & Pindyck, R. (1994). Investment under uncertainty. Princeton: Princeton University Press.

    Google Scholar 

  • Föllmer, H., & Schweizer, M. (1991). Applied Stochastic Analysis : Stochastics Monographs, Chapter Hedging of contingent claims under incomplete information, pp. 389–414. Gordon and Breach, London.

  • Hartmann, M., & Hassan, A. (2006). Application of real options analysis for pharmaceutical R&D project valuationempirical results from a survey. Research Policy, 35, 343–354.

    Article  Google Scholar 

  • Jaimungal, S., & Lawryshyn, Y. (2015). Incorporating managerial information into real option valuation. In L. M. Ad, R. and R. Sircar (Eds.), Commodities,Energy and Environmental Finance, Vol. 74 of Fields Institute Communications, pp. 213–238. Springer-Verlag New York.

  • Luehrman, T. (1997). What’s it worth? a general manager’s guide to valuation. Cambridge: Harvard Business Review.

    Google Scholar 

  • Luehrman, T. (1998a). Investment opportunities as real options: Getting started on the numbers. Cambridge: Harvard Business Review.

  • Leuhrman, T. (1998b). Strategy as a portfolio of real options. Cambridge: Harvard Business Review.

  • Luo, L.-M., Sheu, H.-J., & Hu, Y.-P. (2008). Evaluating R&D projects with hedging behavior. Research Technology Management, 51(6), 51–57.

    Google Scholar 

  • Mathews, S. (2009). Valuing risky projects with real options. Research Technology Management, 52(5), 32–41.

    Google Scholar 

  • Mathews, S., & Datar, V. (2007). A practical method for valuing real options: The boeing approach. Journal of Applied Corporate Finance, 19(1), 95–104.

    Article  Google Scholar 

  • Myers, S. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5, 147–175.

    Article  Google Scholar 

  • Oriani, R., & Sobrero, M. (2008). Uncertainty and the market valuation of R&D within a real options logic. Strategic Management Journal, 29(4), 343–361.

    Article  Google Scholar 

  • Pendharkar, P. (2010). Valuing interdependent multi-stage it investments: A real options approach. European Journal of Operational Research, 201(3), 847–859.

    Article  Google Scholar 

  • Shockley, R. (2006). An applied course in real options valuation. Nashville: South-Western College Pub.

    Google Scholar 

  • Smith, J., & Nau, R. (1995). Valuing risky projects: Option pricing theory and decision analysis. Management Science, 41(5), 795–816.

    Article  Google Scholar 

  • Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation. Cambridge: The MIT Press.

    Google Scholar 

  • Truong, G., Partington, G., & Peat, M. (2008). Cost-of-capital estimation and capital-budgeting practice in australia. Australian Journal of Management, 33(1), 95–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Lawryshyn.

Appendices

Appendix 1: Triangular Distributions

In this Appendix, we collect some standard results on triangular distributions. Assuming a triangular density function for a random variable, A, we have

$$\begin{aligned} f_A(y) = {\left\{ \begin{array}{ll} {\displaystyle a\frac{y-y_-}{y_0-y_-}}, &{} y_-< y \le y_0, \\ {\displaystyle a\frac{y_+-y}{y_+-y_0}}, &{} y_0 < y \le y_+, \\ 0, &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$
(22)

Here, the normalizing constant \(a=2/(y_+-y_-)\). The corresponding distribution function is

$$\begin{aligned} F_A(y) = {\left\{ \begin{array}{ll} 0, &{} y \le y_-, \\ {\displaystyle \frac{a}{2}\frac{(y-y_-)^2}{y_0-y_-}}, &{} y_-< y \le y_0, \\ {\displaystyle 1 - \frac{a}{2}\frac{(y_+-y)^2}{y_+-y_0}}, &{} y_0 < y \le y_+, \\ 1, &{} y > y_+. \end{array}\right. } \end{aligned}$$
(23)

It’s inverse is given by

$$\begin{aligned} F_A^{-1}\left( p \right) = {\left\{ \begin{array}{ll} {\displaystyle y_- + \sqrt{(y_+-y_-)(y_0-y_-)\, p}}\;, &{} p \le p_c, \\ {\displaystyle y_+ - \sqrt{(y_+-y_-)(y_+-y_0)\, (1-p)}}\;, &{} p > p_c, \end{array}\right. } \end{aligned}$$
(24)

where the critical point \(p_c =(y_0-y_-)/(y_+-y_-)\).

Figure 7 shows a typical configuration. Note that \(y_-\), \(y_0\) and \(y_+\) carry the interpretation of the project value in a pessimistic or poor scenario, a likely or moderate scenario and an optimistic or good scenario.

Fig. 7
figure 7

A random variable with a triangular pdf

Appendix 2: Proof of results

In this Appendix we provide concise proofs of Propositions 1 through 4. Where applicable the proofs are done for sales only and, for convenience we write \(\varphi ^S(.)\) as \(\varphi (.)\).

1.1 Proof of Proposition 1

We seek \(\varphi (.)\) such that \({\mathbb {P}}(\varphi (X_T)\le s | \mathcal F_0) = F^*(s)\). Since,

$$\begin{aligned} X_T|_{\mathcal F_0} \mathop {=}\limits ^{d} X_0 + \sqrt{T} Z \quad \text {where} \quad Z\underset{\scriptstyle {\mathbb {P}}}{\sim } \mathcal N(0,1), \end{aligned}$$

we have that

$$\begin{aligned} {\mathbb {P}}(\varphi (X_T)\le s | \mathcal F_0)&= {\mathbb {P}} \left( X_0 + \sqrt{T} Z \le {\varphi }^{-1}(s) \right) \\&= \varPhi \left( \frac{{\varphi }^{-1}(s)-X_0}{\sqrt{T}}\right) \triangleq F^*(s)\,. \end{aligned}$$

Consequently, if \(F^*(.)\) is invertible then

$$\begin{aligned} \varphi (X_T) = F^{*-1}\left( \varPhi \left( \frac{X_T-X_0}{\sqrt{T}}\right) \right) \end{aligned}$$

and the proof is complete.\(\square \)

1.2 Proof of Proposition 2

We define the joint distribution function of sales and GM% as U(sm). Thus,

$$\begin{aligned} U(s,m)=P(S\le s,\,M \le m) \end{aligned}$$

and recalling that \(S=\varphi ^S(X_T)\) and \(M=\varphi ^M(Y_T)\), and \(\varphi ^S(X_T) = F^{*-1}\left( \varPhi \left( \frac{X_T-X_0}{\sqrt{T}}\right) \right) \) and \(\varphi ^M(Y_T) = G^{*-1}\left( \varPhi \left( \frac{Y_T-Y_0}{\sqrt{T}}\right) \right) \), we have

$$\begin{aligned} U(s,m)&=P\left( F^{*-1}\left( \varPhi \left( \frac{X_T-X_0}{\sqrt{T}}\right) \right) \le s, \, G^{*-1}\left( \varPhi \left( \frac{Y_T-Y_0}{\sqrt{T}}\right) \right) \le m\right) \\&=P\left( \frac{X_T-X_0}{\sqrt{T}} \le \varPhi ^{-1}(F^*(s)),\, \frac{Y_T-Y_0}{\sqrt{T}} \le \varPhi ^{-1}(G^*(m)) \right) \\&=\varPhi _{\varOmega _{\rho _{SM}}} \left( \varPhi ^{-1}(F^*(s)), \, \varPhi ^{-1}(G^*(m)) \right) \end{aligned}$$

where \(\varPhi _{\varOmega _{\rho }}\) represents the standard joint normal distribution for correlation \(\rho \). The PDF \(u(s,m) = \partial _{s,m} U(s,m)\) can now be computed to give

$$\begin{aligned} u(s,m)=\phi _{\varOmega _{\rho _{SM}}} \left( \varPhi ^{-1} \left( F^*(s) \right) , \varPhi ^{-1} \left( G^*(m) \right) \right) \frac{f^*(s)}{\phi \left( \varPhi ^{-1}\left( F^*(s)\right) \right) } \frac{g^*(m)}{\phi \left( \varPhi ^{-1}\left( G^*(m)\right) \right) } \end{aligned}$$

where \(\phi _{\varOmega _{\rho }}\) represents the standard joint normal density with correlation \(\rho \), and \(\phi \) is the standard normal density.\(\square \)

1.3 Proof of Proposition 3

Here, we compute the probability distribution of the project value conditional on the market sector indicator \(S_t\) at time t. To this end we have

$$\begin{aligned} F_{S_T | X_t}&= {\mathbb {P}}( S_T = \varphi (X_T) \le s | X_t ) \\&={\mathbb {P}}\left( X_t + \sqrt{(}T-t) Z \le \varphi ^{-1}(s) \right) \\&=\varPhi \left( \frac{\varphi ^{-1}(s) - X_t}{\sqrt{T-t}} \right) \\&=\varPhi \left( \frac{\varPhi ^{-1}\left( F^*(s) \right) \sqrt{T}+X_0-X_t}{\sqrt{T-t}} \right) \end{aligned}$$

where \(Z\underset{\scriptstyle {\mathbb {P}}}{\sim } \mathcal N(0,1)\) and the proof is complete.\(\square \)

1.4 Proof of Proposition 4

Condition on the market sector index at time t, the risk-neutral probability distribution function can be computed as follows

$$\begin{aligned} \widehat{F}_{S_T | X_t }(s)&= {\mathbb {Q}}\left( \varphi (X_{T}) \le s \, | X_t \right) \\&= {\mathbb {Q}}\left( X_t + \widehat{\nu }(T-t)+ \sqrt{T-t} Z \le \varphi ^{-1}(s) \right) \\&= {\mathbb {Q}} \left( Z \le \frac{\varPhi ^{-1}\left( F^*(s) \right) \sqrt{T} + X_0 - X_t - \widehat{\nu }(T-t)}{\sqrt{T-t}} \right) \end{aligned}$$

Here, \(Z\underset{\scriptstyle {\mathbb {Q}}}{\sim } \mathcal N(0,1)\). Finally,

$$\begin{aligned} \widehat{F}_{S_T|X_t}(s) = \varPhi \left( \frac{\varPhi ^{-1}\left( F^*(s) \right) \sqrt{T}+X_0-X_t-\widehat{\nu }(T-t)}{\sqrt{T-t}} \right) \end{aligned}$$

and the proof is complete.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimungal, S., Lawryshyn, Y. Using managerial revenue and cost estimates to value early stage real option investments. Ann Oper Res 259, 173–190 (2017). https://doi.org/10.1007/s10479-016-2344-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2344-8

Keywords

Navigation