Skip to main content
Log in

Dynamic portfolio insurance strategies: risk management under Johnson distributions

  • S.I.: Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The purpose of this paper is to analyze the gap risk of dynamic portfolio insurance strategies which generalize the “Constant Proportion Portfolio Insurance” (CPPI) method by allowing the multiple to vary. We illustrate our theoretical results for conditional CPPI strategies indexed on hedge funds. For this purpose, we provide accurate estimations of hedge funds returns by means of Johnson distributions. We introduce also an EGARCH type model with Johnson innovations to describe dynamics of risky logreturns. We use both VaR and Expected Shortfall as downside risk measures to control gap risk. We provide accurate upper bounds on the multiple in order to limit this gap risk. We illustrate our theoretical results on Credit Suisse Hedge Fund Index. The time period of the analysis lies between December 1994 and December 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For example, it is well known that portfolio managers cannot actually modify their portfolio weights in continuous time. Additionally, asset liquidity problems may occur, especially during stock markets crashes (see Longin 1997).

  2. Since we consider small time intervals , we set \(r_{t_{k} }=0\).

  3. Since we assume that the pdf of the random variables \(\epsilon \) is non negative, the probability of the event \(C_{t_{k-1}}=L_{t_{k-1}}\) is null.

  4. For the proofs of the results that follow, see “Appendix”.

  5. We choose the Multi-Strategy index since composed of several other types of hedge fund and so it’s the only index that can represent a maximum of hedge fund strategies.

  6. Note that this condition is satisfied as soon as \(L_{t_{k-1}}>0.\)

References

  • Ackerman, C., McEnally, R., & Ravenscraft, D. (1999). The performance of hedge funds: Risk, return and incentives. Journal of Finance, 54, 833–874.

    Article  Google Scholar 

  • Agarwal, V., & Naik, N. Y. (2004). Risks and portfolio decisions involving hedge funds. Review of Financial Studies, 17, 63–98.

    Article  Google Scholar 

  • Bacmann, J.-F., & Scholz, S. (2003). Alternative performance measures for hedge funds. AIMA Journal, 55, 1–3.

  • Ben Ameur, H., & Prigent, J.-L. (2014). Portfolio Insurance: Gap risk under conditional multiples. European Journal of Operational Research, 236, 238–253.

    Article  Google Scholar 

  • Bertrand, P., & Prigent, J.-L. (2002). Portfolio insurance: The extreme value approach to the CPPI method. Finance, 23, 69–86.

    Google Scholar 

  • Bertrand, P., & Prigent, J.-L. (2011). Omega performance measure and portfolio insurance. Journal of Banking and Finance, 35, 1811–1823.

    Article  Google Scholar 

  • Black, F., & Jones, R. (1987). Simplifying portfolio insurance. Journal of Portfolio Management, 14, 48–51.

    Article  Google Scholar 

  • Black, F., & Perold, A. R. (1992). Theory of constant proportion portfolio insurance. The Journal of Economics, Dynamics and Control, 16, 403–426.

    Article  Google Scholar 

  • Black, F., & Rouhani, R. (1989). Constant proportion portfolio insurance and the synthetic put option: A comparison. In F. J. Fabozzi (Ed.), Investment Management. Cambridge, Massachusetts: Ballinger.

    Google Scholar 

  • Brooks, C., & Kat, H. M. (2001). The statistical properties of Hedge fund index returns and their implications for investors. Working Paper, ISMA Centre Discussion Papers In Finance.

  • Brown, S. J., Goetzmann, W. N., & Ibbotson, R. G. (1999). Offshore hedge funds: Survival and performance: 1989–1995. Journal of Business, 72, 91–119.

    Article  Google Scholar 

  • Caglayan, M., & Edwards, F. (2001). Hedge fund performance and manager skill. Journal of Futures Markets, 21, 1003–1028.

  • Engle, R., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics, 22, 367–381.

  • Ested, T., & Kritzman, M. (1988). TIPP: Insurance without complexity. Journal of Portfolio Management, 14, 38–42.

    Article  Google Scholar 

  • Föllmer, H., & Leukert, P. (1999). Quantile hedging. Finance and Stochastics, 3, 251–273.

    Article  Google Scholar 

  • Fung, W., & Hsieh, D. (1997). Empirical characteristics of dynamic trading strategies: The case of hedge funds. Review of Financial Studies, 10, 275–302.

    Article  Google Scholar 

  • Hamidi, B., Jurczenko, E., & Maillet, B. (2009a). D’un multiple conditionnel en assurance de portefeuille: CaViaR pour les gestionnaires? University of Paris 1. Working paper CES 2009.33.

  • Hamidi, B., Jurczenko, E., & Maillet, B. (2009b) A CAViaR time-varying proportion portfolio insurance. Bankers, Markets and Investors 102, September–October, 4–21.

  • Hamidi, B., Maillet, B., & Prigent, J. L. (2014). Dynamic autoregressive expectile for time-invariant portfolio protection strategies. Journal of Economic Dynamics and Control, 46, 1–29.

    Article  Google Scholar 

  • Hill, I. D., Hill, R., & Holder, R. L. (1976). Fitting Johnson curves by moments. Applied Statistics, AS99.

  • Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrica, 58, 547–558.

    Google Scholar 

  • Longin, F. (1997). The treshold effect in expected volatility: A model based on asymmetric. Information Review of Financial Studies, 10, 837–869.

    Article  Google Scholar 

  • Naguez, N., & Prigent, J. L. (2014). Optimal portfolio positioning within Johnson distribution. THEMA, University of Cergy-Pontoise, Working Paper.

  • Perold, A. R. (1986). Constant Proportion portfolio insurance. Harvard Business School, Working paper.

  • Perold, A. R., & Sharpe, W. (1988). Dynamic strategies for asset allocations. Financial Analysts Journal, 44, 16–27.

    Article  Google Scholar 

  • Poncet, P., & Portait, R. (1997). Assurance de Portefeuille. In Y. Simon (Ed.), Encyclopédie des Marchés Financiers, Economica, pp. 140–141.

  • Prigent, J. L. (2001). Assurance du portefeuille: analyse et extension de la méthode du coussin. Banque et Marchés, 51, 33–39.

    Google Scholar 

  • Roman, E., Kopprash, R., & Hakanoglu, E. (1989). Constant Proportion Portfolio Insurance for fixed-income investment. Journal of Portfolio Management, 15, 58–66.

    Article  Google Scholar 

  • Slifker, J. F., & Shapiro, S. S. (1980). The Johnson system: Selection and parameter estimation. Technometrics, 22, 239–246.

    Article  Google Scholar 

  • Wheeler, R. E. (1980). Quantile estimators of Johnson curve parameters. Biometrika, 67, 725–728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naceur Naguez.

Appendix

Appendix

1.1 Proofs of Propositions 8 and 9

In what follows, the cushion at time \(t_{k-1}\) is strictly positive (\(C_{t_{k-1}}>0\)).

1.1.1 Case 1: \(C_{t_{k-1}}>L_{t_{k-1}}\) (Proposition 8)

The local quantile condition is the following:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ 1+m_{t_{k-1}}\times \frac{\Delta S_{t_{k}}}{S_{t_{k-1}}}>\frac{L_{t_{k-1}}}{C_{t_{k-1}}}\right] \ge \left( 1-a\right) , \end{aligned}$$

which is equivalent to:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \ge \left( 1-a\right) . \end{aligned}$$

At time \(t_{k}\), we have two cases:

$$\begin{aligned} \left\{ \begin{array} [c]{c} R_{t_{k}}<1:S_{t_{k}}<S_{t_{k-1}}\text { (}S\text { decreases),}\\ R_{t_{k}}>1:S_{t_{k}}>S_{t_{k-1}}\text { (}S\text { increases).} \end{array} \right. \end{aligned}$$

We assume that the multiple \(m_{t_{k-1}}\ \)is higher than 1 , (thus, it is non negative).

Then, we deduce:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) >0\right] \\&\quad \quad +\, {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) <0\right] . \end{aligned}$$

1.1. If \(C_{t_{k-1}}>L_{t_{k-1}},\) then:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \\&\quad = {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ R_{t_{k}}-1>0\right] { } + {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) { <0}\right] . \end{aligned}$$

Note that we have:

$$\begin{aligned} m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\Leftrightarrow R_{t_{k}}>\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1. \end{aligned}$$

Then, if the condition \(\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}} }+1>0\) is fulfilled, we have: \(R_{t_{k}}>\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}} }-1}{m_{t_{k-1}}}+1.\) Footnote 6

1.1.1. If we have \(\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1<0, \) then the condition \(R_{t_{k}}>\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}} -1}{m_{t_{k-1}}}+1\) is satisfied and:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ 1+m_{t_{k-1}}\times \frac{\Delta S_{t_{k}} }{S_{t_{k-1}}}>\frac{L_{t_{k-1}}}{C_{t_{k-1}}}\right] =1>(1-a). \end{aligned}$$

1.1.2. Examine the case \(C_{t_{k-1}}>0\), \(C_{t_{k-1}}>L_{t_{k-1}}\) and \(\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1>0.\)

We have:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ R_{t_{k}}-1>0\right] +{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ 1>R_{t_{k}}>\frac{\frac{L_{t_{k-1} }}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right] \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ R_{t_{k}}>\frac{\frac{L_{t_{k-1} }}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right] , \end{aligned}$$

which is equivalent to:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ \exp \left[ h_{t_{k}}^{-1}\left( \varepsilon _{t_{k}}\right) \sigma _{t_{k}}+\mu _{t}\right] >\frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right] \ge \left( 1-a\right) \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ \varepsilon _{t_{k}}>h_{t_{k} }\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}} }{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}}}{\sigma _{t_{k}} }\right) \right] \ge \left( 1-a\right) \\&\quad =1-{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ \varepsilon _{t_{k}}<h_{t_{k} }\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}} }{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}}}{\sigma _{t_{k}} }\right) \right] \ge \left( 1-a\right) \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ \varepsilon _{t_{k}}<h_{t_{k} }\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}} }{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}}}{\sigma _{t_{k}} }\right) \right] \le 1-\left( 1-a\right) . \end{aligned}$$

Denote by N the cdf of the standard Gaussian distribution (the cdf of \(\varepsilon _{t_{k}}\)). We have:

$$\begin{aligned} N\left[ h_{t_{k}}\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}} }{\sigma _{t_{k}}}\right) \right] \le 1-(1-a), \end{aligned}$$

which is equivalent to:

$$\begin{aligned} h_{t_{k}}\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}} }{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}}}{\sigma _{t_{k}} }\right) \le (N)^{-1}\left( 1-(1-a)\right) . \end{aligned}$$

and also equivalent to:

$$\begin{aligned} \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}\le \exp \left[ \sigma _{t_{k}}h_{t_{k}}^{-1}\left( N^{-1}\left( 1-(1-a)\right) \right) +\mu _{t_{k}}\right] -1. \end{aligned}$$

Recall that \(q_{(\epsilon ,T)}=N^{-1}\left[ \left( 1-(1-a)\right) ^{\frac{1}{T}}\right] .\)

Finally, we have:

(i) If \(\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] <1,\)

If \(\frac{L_{t_{k-1}}}{C_{t_{k-1}}}<\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] ,\) then \(m_{t_{k-1}}\)must satisfy the following constraint:

$$\begin{aligned} m_{t_{k-1}}\le \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{\exp \left[ h_{t_{k} }^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k} }\right] -1}. \end{aligned}$$

If \(\frac{L}{C_{t_{k-1}}}>\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] ,\) then the previous constraint must be satisfied but also involves more that \(m_{t_{k-1}}<1.\)

(ii) If \(\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] >1,\) then there is no constraint for \(m_{t_{k-1}}.\)

1.1.2 Case 1: \(0<C_{t_{k-1}}<L_{t_{k-1}}\) (Proposition 9)

As previously, the quantile condition is given by:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ 1+m_{t_{k-1}}\times \frac{\Delta S_{t_{k}}}{S_{t_{k-1}}}>\frac{L_{t_{k-1}}}{C_{t_{k-1}}}\right] \ge (1-a), \end{aligned}$$

which is equivalent to:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}}-1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \ge (1-a) \end{aligned}$$

At time \(t_{k}\), we have two cases:

$$\begin{aligned} \left\{ \begin{array} [c]{c} R_{t_{k}}<1:S_{t_{k}}<S_{t_{k-1}}\text { (}S\text { decreases),}\\ R_{t_{k}}>1:S_{t_{k}}>S_{t_{k-1}}\text { (}S\text { increases).} \end{array} \right. \end{aligned}$$

We assume that the multiple \(m_{t_{k-1}}\ \)is non negative.

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \\&\quad ={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) >0\right] \\&\quad \quad + {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) <0\right] . \end{aligned}$$

Therefore, we have:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] \\&={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\cap \left( R_{t_{k}}-1\right) >0\right] \\&={\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ m_{t_{k-1}}\left( R_{t_{k}} -1\right) >\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1\right] . \end{aligned}$$

Consequently, we get the equivalence between the two following conditions:

$$\begin{aligned}&{\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ 1+m_{t_{k-1}}\times \frac{\Delta S_{t_{k}}}{S_{t_{k-1}}}>\frac{L_{t_{k-1}}}{C_{t_{k-1}}}\right] \ge (1-a),\\&\quad {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ R_{t_{k}}\ge \frac{\frac{L_{t_{k-1} }}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right] \ge (1-a). \end{aligned}$$

This is equivalent to:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ R_{t_{k}}\ge \frac{\frac{L_{t_{k-1} }}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right] \ge (1-a). \end{aligned}$$

Thus, the quantile condition is equivalent to:

$$\begin{aligned} {\mathbb {P}}^{{\mathcal {F}}_{t_{k-1}}}\left[ \varepsilon _{t_{k}}>h_{t_{k}}\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}} -1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{_{t_{k}}}}{\sigma _{t_{k}}}\right) \right] \ge \left( 1-a\right) \end{aligned}$$

And also to:

$$\begin{aligned} h_{t_{k}}\left( \frac{1}{\sigma _{t_{k}}}\ln \left( \frac{\frac{L_{t_{k-1}} }{C_{t_{k-1}}}-1}{m_{t_{k-1}}}+1\right) -\frac{\mu _{t_{k}}}{\sigma _{t_{k}} }\right) \le N^{-1}\left( 1-(1-a)\right) . \end{aligned}$$

We obtain:

$$\begin{aligned} \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{m_{t_{k-1}}}\le \exp \left[ h_{t_{k} }^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k} }\right] -1. \end{aligned}$$

Finally, we have:

2-1) If \(\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] <1,\) there is no positive solution for \(m_{t_{k-1}}\)

2-2) If \(\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] >1,\) then:

If \(\frac{L_{t_{k-1}}}{C_{t_{k-1}}}<\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] ,\) then there is no constraint for \(m_{t_{k-1}}\)

If \(\frac{L_{t_{k-1}}}{C_{t_{k-1}}}>\exp \left[ h_{t_{k}}^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k}}\right] ,\) then \(m_{t_{k-1}}\)must satisfy the following constraint:

$$\begin{aligned} m_{t_{k-1}}\ge \frac{\frac{L_{t_{k-1}}}{C_{t_{k-1}}}-1}{\exp \left[ h_{t_{k} }^{-1}\left( q_{_{(a,T})}^{\varepsilon }\right) \sigma _{t_{k}}+\mu _{t_{k} }\right] -1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naguez, N. Dynamic portfolio insurance strategies: risk management under Johnson distributions. Ann Oper Res 262, 605–629 (2018). https://doi.org/10.1007/s10479-016-2121-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2121-8

Keywords

JEL Classification

Navigation