Skip to main content
Log in

Equality and homogeneity of generalized integral means

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Given two continuous functions \(f,g \colon I \to\mathbb{R}\) such that g is positive and f/g is strictly monotone, a measurable space \((T,\mathcal{A})\), a measurable family of d-variable means \(m: I^{d} \times T \to I\), and a probability measure μ on the measurable sets \(\mathcal{A}\), the d-variable mean \(M_{f,g,m;\mu} \colon I^{d} \to I\) is defined by

$$M_{f,g,m;\mu}({\bf x}) :=\Bigl(\frac{f}{g}\Bigr)^{-1}\biggl( \frac{\int_{T} f(m(x_{1},\ldots,x_{d},t)){\rm d}\mu(t)} {\int_{T} g(m(x_{1},\ldots,x_{d},t)){\rm d}\mu(t)}\biggr) \quad ({\bf x} =(x_{1},\ldots,x_{d})\in I^{d}).$$

The aim of this paper is to solve the equality and homogeneity problems of these means, i.e., to find conditions for the generating functions (f, g) and (h, k), for the family of means m, and for the measure μ such that the equality

$$M_{f,g,m;\mu}( {\bf x} )=M_{h,k,m;\mu}( {\bf x} ) \quad ( {\bf x} \in I^{d})$$

and the homogeneity property

$$M_{f,g,m;\mu}(\lambda {\bf x} ) = \lambda M_{f,g,m;\mu}( {\bf x} ) \quad (\lambda>0,\, {\bf x} ,\lambda {\bf x} \in I^{d}), $$

respectively, be satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J., Daróczy, Z.: Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind. Publ. Math. Debrecen 10, 171–190 (1963)

    MathSciNet  MATH  Google Scholar 

  2. M. Bajraktarević, Sur une équation fonctionnelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II, 13 (1958), 243–248

  3. Bajraktarević, M.: Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte. Studia Sci. Math. Hungar. 4, 3–8 (1969)

    MathSciNet  MATH  Google Scholar 

  4. Berrone, L.R., Moro, J.: Lagrangian means. Aequationes Math. 55, 217–226 (1998)

    Article  MathSciNet  Google Scholar 

  5. Berrone, L.R., Moro, J.: On means generated through the Cauchy mean value theorem. Aequationes Math. 60, 1–14 (2000)

    Article  MathSciNet  Google Scholar 

  6. M. Bessenyei and Zs. Páles, Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl., 6 (2003), 379–392

  7. Burai, P., Jarczyk, J.: Conditional homogeneity and translativity of Makó-Páles means. Ann. Univ. Sci. Budapest. Sect. Comp. 40, 159–172 (2013)

    MATH  Google Scholar 

  8. Gini, C.: Di una formula compressiva delle medie. Metron 13, 3–22 (1938)

    MathSciNet  MATH  Google Scholar 

  9. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press (Cambridge, 1934)

  10. Losonczi, L.: Equality of two variable weighted means: reduction to differential equations. Aequationes Math. 58, 223–241 (1999)

    Article  MathSciNet  Google Scholar 

  11. Losonczi, L.: Comparison and subhomogeneity of integral means. Math. Inequal. Appl. 5, 609–618 (2002)

    MathSciNet  MATH  Google Scholar 

  12. L. Losonczi, Homogeneous Cauchy mean values, in: Functional Equations Results and Advances, Z. Daróczy and Zs. Páles, Eds., Advances in Mathematics, vol. 3, Kluwer Acad. Publisher (Dordrecht, 2002), pp. 209–218

  13. Losonczi, L.: On the comparison of Cauchy mean values. J. Inequal. Appl. 7, 11–24 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Losonczi, L.: Equality of two variable Cauchy mean values. Aequationes Math. 65, 61–81 (2003)

    Article  MathSciNet  Google Scholar 

  15. Losonczi, L.: Equality of two variable means revisited. Aequationes Math. 71, 228–245 (2006)

    Article  MathSciNet  Google Scholar 

  16. Losonczi, L.: Homogeneous non-symmetric means of two variables. Demonstratio Math. 40, 169–180 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Losonczi, L.: Homogeneous symmetric means of two variables. Aequationes Math. 74, 262–281 (2007)

    Article  MathSciNet  Google Scholar 

  18. Losonczi, L.: On homogenous Páles means. Ann. Univ. Sci. Budapest. Sect. Comput. 41, 103–117 (2013)

    MathSciNet  MATH  Google Scholar 

  19. L. Losonczi and Zs. Páles, Comparison of means generated by two functions and a measure, J. Math. Anal. Appl., 345 (2008), 135–146

  20. L. Losonczi and Zs. Páles, Equality of two-variable functional means generated by different measures, Aequationes Math., 81 (2011), 31–53

  21. Z. Makó and Zs. Páles, On the equality of generalized quasiarithmetic means, Publ. Math. Debrecen, 72 (2008), 407–440

  22. Zs. Páles, On comparison of homogeneous means, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 32 (1989), 261–266

  23. Zs. Páles, On the equality of quasi-arithmetic and Lagrangian means, J. Math. Anal. Appl., 382 (2011), 86–96

  24. Zs. Páles and A. Zakaria, On the local and global comparison of generalized Bajraktarević means, J. Math. Anal. Appl., 455 (2017), 792–815

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zs. Páles.

Additional information

The research of the first author was supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651 and by the EFOP-3.6.1-16-2016-00022, EFOP-3.6.2-16-2017-00015 projects. These projects are co-financed by the European Union and the European Social Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páles, Z., Zakaria, A. Equality and homogeneity of generalized integral means. Acta Math. Hungar. 160, 412–443 (2020). https://doi.org/10.1007/s10474-019-01012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-01012-6

Key words and phrases

Mathematics Subject Classification

Navigation