Skip to main content
Log in

On biased random walks, corrupted intervals, and learning under adversarial design

  • Regular Submission
  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We tackle some fundamental problems in probability theory on corrupted random processes on the integer line. We analyze when a biased random walk is expected to reach its bottommost point and when intervals of integer points can be detected under a natural model of noise. We apply these results to problems in learning thresholds and intervals under a new model for learning under adversarial design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Duchi, J.C.: The generalization ability of online algorithms for dependent data. IEEE Trans. Inf. Theory 59(1), 573–587 (2013)

    Article  MathSciNet  Google Scholar 

  2. Anava, O., Hazan, E., Mannor, S., Shamir, O.: Online learning for time series prediction. In: Shalev-shwartz, S., Steinwart, I. (eds.) COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14 Princeton University, NJ, USA, volume 30 of JMLR Workshop and Conference Proceedings, pp. 172–184, JMLR.org (2013)

  3. Angluin, D., Laird, P.D.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1987)

    Google Scholar 

  4. Audiffren, J., Ralaivola, L.: Cornering stationary and restless mixing bandits with remix-ucb. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, pp. 3339–3347, Montreal, Quebec, Canada (2015)

  5. Bateman, H.: Higher Transcendental Functions. Krieger Pub Co. ISBN 0898742064 (1981)

  6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. Cover, T.M.: The number of linearly inducible orderings of points in d-space. SIAM J. Appl. Math. 15(2), 434–439 (1967)

    Article  MathSciNet  Google Scholar 

  8. Gamarnik, D.: Extension of the PAC framework to finite and countable Markov chains. IEEE Trans. Inform. Theory 49(1), 338–345 (2003)

    Article  MathSciNet  Google Scholar 

  9. Gofer, E.: Machine Learning Algorithms with Applications in Finance. PhD thesis, Tel Aviv University (2014)

  10. Gradshteyn, I. S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007). ISBN 978-0-12-373637-6; 0-12-373637-4. Translated from the Russian, Translation Edited and with a Preface by Alan Jeffrey and Daniel Zwillinger With One CD-ROM, Windows, Macintosh and UNIX)

    MATH  Google Scholar 

  11. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evol. Comput. 7(3), 231–253 (1999)

    Article  Google Scholar 

  12. Herbrich, R., Williamson, R.C.: Algorithmic luckiness. J. Mach. Learn. Res. 3, 175–212 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Karandikar, R.L., Vidyasagar, M.: Rates of uniform convergence of empirical means with mixing processes. Statist. Probab. Lett. 58(3), 297–307 (2002). ISSN 0167-7152

    Article  MathSciNet  Google Scholar 

  14. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)

    Article  MathSciNet  Google Scholar 

  15. Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of probabilistic concepts. J. Comput. Syst. Sci. 48(3), 464–497 (1994). ISSN 0022-0000

    Article  MathSciNet  Google Scholar 

  16. Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach. Learn. 17(2-3), 115–141 (1994)

    Article  Google Scholar 

  17. Kearns, M., Vazirani, U.: An introduction to computational learning theory. The MIT press (1997)

  18. Koolen, W.M., Vovk, V.: Buy low, sell high. Theor. Comput. Sci. 558, 144–158 (2014). ISSN 0304-3975. https://doi.org/10.1016/j.tcs.2014.09.030, http://www.sciencedirect.com/science/article/pii/S0304397514007087. Algorithmic Learning Theory

    Article  MathSciNet  Google Scholar 

  19. Koshy, T.: Catalan numbers with applications. Oxford University Press, Oxford (2009). ISBN 978-0-19-533454-8

    MATH  Google Scholar 

  20. Kuznetsov, V., Mohri, M.: Learning theory and algorithms for forecasting non-stationary time series. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, pp. 541–549, Montreal, Quebec, Canada (2015)

  21. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2017). ISBN 978-1-4704-2962-1. Second edition of [ MR2466937], With a chapter on “Coupling from the past” by James G. Propp and David B. Wilson

    Book  Google Scholar 

  22. London, B., Huang, B., Getoor, L.: Improved generalization bounds for large-scale structured prediction. In: NIPS Workshop on Algorithmic and Statistical Approaches for Large Social Networks (2012)

  23. London, B., Huang, B., Taskar, B., Getoor, L.: Collective stability in structured prediction: Generalization from one example. In: proceedings of the 30th International Conference on Machine Learning (ICML-13) (2013)

  24. Massart, P., Nédélec, É., et al.: Risk bounds for statistical learning. Ann. Stat. 34(5), 2326–2366 (2006)

    Article  MathSciNet  Google Scholar 

  25. Mohri, M., Rostamizadeh, A.: Rademacher complexity bounds for non-i.i.d. processes. In: Neural Information Processing Systems (NIPS) (2008)

  26. Mohri, M., Rostamizadeh, A.: Stability bounds for stationary phi-mixing and beta-mixing processes. J. Mach. Learn. Res. 11, 789–814 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Rostamizadeh, A., Mohri, M.: Stability bounds for non-i.i.d. processes. In: Neural Information Processing Systems (NIPS) (2007)

  28. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)

    Article  MathSciNet  Google Scholar 

  29. Shalizi, C.R., Kontorovich, A.: Predictive PAC learning and process decompositions. In: Neural Information Processing Systems (NIPS) (2013)

  30. Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-dependent hierarchies. IEEE Trans. Inf. Theory 44(5), 1926–1940 (1998)

    Article  MathSciNet  Google Scholar 

  31. Steinwart, I., Christmann, A.: Fast learning from non-i.i.d. observations. In: NIPS, pp. 1768–1776 (2009)

  32. Steinwart, I., Hush, D., Scovel, C.: Learning from dependent observations. J. Multivar. Anal. 100(1), 175–194 (2009)

    Article  MathSciNet  Google Scholar 

  33. Teichmann, J.: Foundations of martingale theory and stochastic calculus from a finance perspective (2015)

  34. Toth, B.: No more than three favorite sites for simple random walk. Ann. Probab. 29(1), 484–503 (2001)

    Article  MathSciNet  Google Scholar 

  35. Tsybakov, A.B.: Introduction à l’estimation non-paramétrique, volume 41 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2004). ISBN 3-540-40592-5

    Google Scholar 

  36. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  Google Scholar 

  37. Zimin, A., Lampert, C.H.: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research, pp. 213–222, PMLR Singh, A., Zhu, X.J. (eds.) (2017)

  38. Zou, B., Xu, Z.-B., Xu, J.: Generalization bounds of ERM algorithm with Markov chain samples. Acta Mathematicae Applicatae Sinica (English Series), pp. 1–16 (2014)

Download references

Acknowledgements

We thank an anonymous reviewer of a previous version of this paper for pointing us to the results that led to the discussion at the beginning of Section 4.4.

Daniel Berend was supported in part by the Milken Families Foundation Chair in Mathematics and the Cyber Security Research Center at Ben-Gurion University. Aryeh Kontorovich was supported in part by Israel Science Foundation grant 1602/19 and by Google Research. Lev Reyzin was supported in part by grants CCF-1934915 and CCF-1848966 from the National Science Foundation. Thomas Robinson was supported in part by Israeli Science Foundation grant 1002/14 and the Cyber Security Research Center at Ben-Gurion University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Reyzin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berend, D., Kontorovich, A., Reyzin, L. et al. On biased random walks, corrupted intervals, and learning under adversarial design. Ann Math Artif Intell 88, 887–905 (2020). https://doi.org/10.1007/s10472-020-09696-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-020-09696-1

Keywords

Mathematics Subject Classification 2010

Navigation