Skip to main content
Log in

A 7.9 μA multi-step phase-domain ADC for GFSK demodulators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The phase-domain analog-to-digital converter (Ph-ADC) is proved to be more power efficient than traditional amplitude ADCs in wireless receivers . A low power multi-step Ph-ADC for zero intermediate frequency (IF) GFSK receivers as defined in Bluetooth low energy protocol is proposed in this paper. With dedicatedly designed binary code scheme and multi-step operation, the Ph-ADC requires only 52 current elements and one comparator, in contrast to the design in literature using 260 current elements and 8 comparators. Non-idealities due to transconductance errors and offset errors are theoretically analyzed, followed by a design strategy to minimize trip point errors. Simulation results show that the digital intensive Ph-ADC consumes only 7.9 μA current from a 1.8 V supply when implemented in a 180 nm CMOS process. Monte-Carlo simulations show that the maximum trip point error is only 2.3°, which is less than 1/8 least significant bit. When the Ph-ADC is used in a GFSK demodulator, the required IF Eb/N0 is 13.5 dB to achieve a bit error rates of 0.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wong, A. C. W., et al. (2013). A 1 V 5 mA multimode IEEE 802.15.6/Bluetooth low-energy WBAN transceiver for biotelemetry ap1plications. IEEE Journal of Solid-State Circuits, 48(1), 186–198.

    Article  Google Scholar 

  2. Liu, Y. H. et al. (2013). A 1.9nJ/b 2.4 GHz multistandard (bluetooth low energy/zigbee/IEEE802.15.6) transceiver for personal/body-area networks. In IEEE ISSCC digest of technical papers, pp. 446–447.

  3. Zhang, L., et al. (2013). A reconfigurable sliding-IF transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21% tuning range VCO. IEEE Journal of Solid-State Circuits, 48(11), 2705–2716.

    Article  Google Scholar 

  4. Samadian, S., et al. (2003). Demodulators for a zero-IF bluetooth receiver. IEEE Journal of Solid-State Circuits, 38(8), 1393–1396.

    Article  Google Scholar 

  5. Contaldo, M., et al. (2010). A 2.4-GHz BAW-based transceiver for wireless body area networks. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 391–399.

    Article  Google Scholar 

  6. Masuch, J., et al. (2013). A 1.1-mW-RX −81.4-dBm sensitivity CMOS transceiver for bluetooth low energy. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1660–1673.

    Article  Google Scholar 

  7. Liu, Y. H., et al. (2014). A 1.2 nJb 2.4 GHz receiver with a sliding-IF phaseto- digital converter for wireless personal body-area networks. IEEE Journal of Solid-State Circuits, 49(12), 3005–3017.

    Article  Google Scholar 

  8. Bluetooth SIG. (2010). Specification of the bluetooth system v4.0. www.Bluetooth.org. June 30, 2010.

  9. Liu, Y., et al. (2015). A comparative analysis of phase-domain ADC and amplitude-domain IQ ADC. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(3), 671–679.

    Article  MathSciNet  Google Scholar 

  10. Banerjee, B., et al. (2010). A 290 μA, 3.2 MHz 4-bit phase ADC for constant envelope, ultra-low power radio. In Proceedings of NORCHIP conference, pp. 1–4.

  11. Roux, E. L., et al. (2010). A 1 V RF SoC with an 863-to-928 MHz 400 kbs radio and a 32b dual-MAC DSP core for wireless sensor and body networks. In IEEE ISSCC Digest of technical papers, pp. 464–465.

  12. Masuch, J., et al. (2012). A 190-μW zero-IF GFSK demodulator with a 4-b phase-domain ADC. IEEE Journal of Solid-State Circuits, 47(11), 2796–2806.

    Article  Google Scholar 

  13. Liu, Y., et al. (2014). A 5 b 12.9 μW charge-redistribution phase domain ADC for low power FSK/PSK demodulation. In Proceedings of European solid state circuits conference (ESSCIRC), pp. 275–278.

  14. Rajabi, L., et al. (2017). A charge-redistribution phase-domain ADC using an IQ-assisted binary-search algorithm. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(7), 1696–1705.

    Article  MathSciNet  Google Scholar 

  15. Gao, S., et al. (2017). A 7.9μA 4-bit 4Msps successive approximation phase-domain ADC for GFSK demodulator. In Proceedings of the IEEE international. symposium on circuits systems (ISCAS), pp 1197–1200.

  16. Chen, S.-W. M., et al. (2006). A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 41(12), 2669–2680.

    Article  Google Scholar 

  17. Sansen, W. M. C. (2006). Analog design essentials. Berlin: Springer.

    Google Scholar 

  18. Chung, Y. H., et al. (2017). An 11-bit 100-MS/s subranged-SAR ADC in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 99, 1–10.

    Google Scholar 

  19. Chen, L., et al. (2017). A 0.95-mW 6-b 700-MSs single-channel loop-unrolled SAR ADC in 40-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(3), 244–248.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by NSFC under contract number 61474070 and 61431166002, and the Okawa Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Jiang, H., Weng, Z. et al. A 7.9 μA multi-step phase-domain ADC for GFSK demodulators. Analog Integr Circ Sig Process 94, 49–63 (2018). https://doi.org/10.1007/s10470-017-1081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1081-5

Keywords

Navigation