Skip to main content
Log in

Bulk-driven class AB fully-balanced differential difference amplifier

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new low-voltage class AB fully-balanced differential difference amplifier (FB-DDA) employing the bulk-driven technique. At the FB-DDA differential pairs the bulk terminal of the MOS transistors are used as signal inputs in order to increase the common-mode input range under low supply voltage. At the class AB output stages the bulk terminal of the MOS transistors are used as control inputs in order to adjust the quiescent currents and compensate them against the process and temperatures (P/T) variation. The voltage supply of the FB-DDA is 0.7 V and the quiescent power consumption is 8.3 µW. The open loop voltage gain is 68 dB and the gain–bandwidth product is 168 kHz for 10 pF capacitive load. The circuit performance was simulated in Cadence/Spectre environment using the TSMC 0.18 µm CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Monsurrò, P., Pennisi, S., Scotti, G., & Trifiletti, A. (2011). Exploiting the body of MOS devices for high performance analog design. IEEE Circuits and Systems Magazine, 11, 8–23.

    Article  Google Scholar 

  2. Khateb, F., Dabbous, S. B. A., & Vlassis, S. (2013). A survey of non-conventional techniques for low-voltage, low-power analog circuits design. Radioengineering, 22, 415–427.

    Google Scholar 

  3. Khateb, F., & Vlassis, S. (2013). Low-voltage bulk-driven rectifier for biomedical applications. Microelectronics Journal, 44, 642–648.

    Article  Google Scholar 

  4. Kulej, T. (2015). 0.4-V bulk-driven operational amplifier with improved input stage. Circuits, Systems and Signal Processing, 34, 1167–1185.

    Article  MathSciNet  Google Scholar 

  5. Raikos, G., & Vlassis, S. (2010). 0.8 V bulk-driven operational amplifier. Analog Integrated Circuits and Signal Processing, 63, 425–432.

    Article  Google Scholar 

  6. Raikos, G., Vlassis, S., & Psychalinos, C. (2012). 0.5 V bulk-driven analog building blocks. AEÜ-International Journal of Electronics and Communications, 66, 920–927.

    Article  Google Scholar 

  7. Raj, N., Singh, A. K., & Gupta, A. K. (2014). Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electronics Letters, 50, 23–25.

    Article  Google Scholar 

  8. Kulej, T., & Khateb, F. (2015). Bulk-driven adaptively biased OTA in 0.18um CMOS. Electronics Letters, 51, 458–460.

    Article  Google Scholar 

  9. Vlassis, S., & Khateb, F. (2014). Automatic tuning circuit for bulk-controlled sub-threshold MOS resistor. Electronics Letters, 50, 432–434.

    Article  Google Scholar 

  10. Delaplaza, A., & Morlon, P. (1984). Power-supply rejection in differential switched-capacitor filters. IEEE Journal of Solid-State Circuits, 19, 912–918. doi:10.1109/JSSC.1984.1052245.

    Article  Google Scholar 

  11. Banu, M., Khoury, J. M., & Tsividis, Y. (1988). Fully differential operational amplifiers with accurate output balancing. IEEE Journal of Solid-State Circuits, 23, 1410–1414. doi:10.1109/4.90039.

    Article  Google Scholar 

  12. Alzaher, H., & Ismail, M. (2001). A CMOS fully balanced differential difference amplifier and its applications. IEEE Transaction on Circuits and Systems II- Analog and Digital Signal Processing, 48, 614–620. doi:10.1109/82.943332.

    Article  Google Scholar 

  13. Duque-Canillo, J. F., Torelli, G., Perez-Aloe, R., Valverde, J. M., & Maloberti, F. (1995). Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Transaction on Circuits and Systems I-Fundamental Theory and Applications, 42, 190–192. doi:10.1109/81.376865.

    Article  Google Scholar 

  14. Francesco, C., Andrea, S., & Alessandro, T. (2013). An improved common-mode feedback loop for the differential-difference amplifier. Analog Integrated Circuits and Signal Processing, 74, 33–48. doi:10.1007/s10470-012-9961-1.

    Article  Google Scholar 

  15. Khateb, F., Kumngern, M., Vlassis, S., Psychalinos, C., & Kulej, T. (2015). Sub-volt fully balanced differential difference amplifier. Circuits Systems and Computers Journal, 24, 1550005–1–1550005–18.

    Article  Google Scholar 

  16. Kulej, T., & Khateb, F. (2015). 0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 46, 362–369.

    Article  Google Scholar 

Download references

Acknowledgements

Research described in this paper was financed by the National Sustainability Program under Grant LO1401. For the research, infrastructure of the SIX Center was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khateb, F., Vlassis, S., Kulej, T. et al. Bulk-driven class AB fully-balanced differential difference amplifier. Analog Integr Circ Sig Process 93, 179–187 (2017). https://doi.org/10.1007/s10470-017-1024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1024-1

Keywords

Navigation