Skip to main content
Log in

Secret key generation scheme from WiFi and LTE reference signals

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Physical layer security has emerged as a promising approach to strengthen security of wireless communications. Particularly, extracting secret keys from channel randomness has attracted an increasing interest from both academic and industrial research groups. In this paper, we present a complete implantation of a secret key generation (SKG) protocol which is compliant with existing widespread Radio Access Technologies. This protocol performs the quantization of the channel state information, then information reconciliation and privacy amplification. We also propose an innovative algorithm to reduce the correlation between quantized channel coefficients that significantly improves the reliability and the resilience of the complete SKG scheme. Finally we assess the performance of our protocol by evaluating the quality of secret keys generated in various propagation environments from real single sense LTE signals, and real single and dual sense WiFi signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. ZEIT, Wie Merkels Handy abgehört werden konnte. Available: http://www.zeit.de/digital/datenschutz/2014-12/umts-verschluesselung-umgehen-angela-merkel-handy 18 Dec 2014.

  2. Ccc-Tv, SS7map: mapping vulnerability of the international mobile roaming infrastructure, [En ligne]. Available: https://media.ccc.de/v/31c3_-_6531_-_en_-_saal_6_-_201412272300_-_ss7map_mapping_vulnerability_of_the_international_mobile_roaming_infrastructure_-_laurent_ghigonis_-_alexandre_de_oliveira#video.

  3. I. Surveillance, Rayzone-piranha-lte-imsi-catcher, [En ligne]. Available: https://insidersurveillance.com/rayzone-piranha-lte-imsi-catcher/.

  4. T. intercept, The Great SIM Heist, Hows Spies kept the key of the Encrypton Castle, [En ligne]. Available: https://firstlook.org/theintercept/2015/02/19/great-sim-heist/.

  5. Wallace, J., & Sharma, R. (2010). Automatic secret keys from reciprocal MIMO Wireless channels: measurement and analysis. IEEE Transactions on Information Forensics and Security, 5(3), 381–392.

    Article  Google Scholar 

  6. He H. D. X. (2013). Is link signature dependable for Wireless Security?. In Proceeding IEEE INFOCOM, pp. 200–204.

  7. Maurer, U., & Wolf, S. (2003). Secret-key agreement over unauthenticated public channels. II. Privacy amplification. IEEE Transactions on Information Theory, 49(14), 839–851.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In C. Cachin & J. L. Camenisch (Eds.), Advances in Cryptology—EUROCRYPT. Lecture notes in computer science (Vol. 3027, pp. 523–540). Springer-Verlag.

  9. Bennett, C., Brassard, G., Crepeau, C., & Maurer, U. (1995). Generalized privacy amplification. IEEE Transactions on Information Theory, 41(6), 1915–1923.

    Article  MathSciNet  MATH  Google Scholar 

  10. National Institute of Standards and Technology Special Publication 800-22 revision 1a. (2010). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

  11. National Institute of Standards and Technology Special Publication 800-90B (Second DRAFT). (2016). Recommendation for the Entropy Sources Used for Random Bit Generation.

  12. Hamburg, M., Kocher, P., & Marson, M. E. (2012). Analysis of Intel’s Ivy Bridge Digital Random Number Generator. Technical Report Cryptographic research INC.

  13. Hamburg, M., Kocher, P., & Marson, M. E. (2012). Analysis of Intel’s Ivy Bridge Digital Random Number Generator.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane L. Kameni Ngassa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameni Ngassa, C.L., Molière, R., Delaveau, F. et al. Secret key generation scheme from WiFi and LTE reference signals. Analog Integr Circ Sig Process 91, 277–292 (2017). https://doi.org/10.1007/s10470-017-0941-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0941-3

Keywords

Navigation