Skip to main content
Log in

Third order voltage mode universal filter using CCCII

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper brings a multi input single output third order universal filter using second generation current controlled current conveyor (CCCII). The proposed structure consists of three CCCIIs and three capacitors for all filter responses. The universal filter offers all five sections of filter responses, namely: low-pass, high-pass, band-pass, notch filter and all-pass. The topology can provide all filter responses by the proper selection of input. The proposed universal filter offers some important features like no external resistor, minimum number of CCCIIs, no component matching constraint for filter response, electronically adjustable filter response using bias current of CCCIIs and many more. The workability of the proposed structure is well verified with PSPICE in which simulation results follow the theoretical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pandey, N., Paul, S. K., & Jain, S. B. (2009). A new electronically tunable current mode universal filter using MO-CCCII. Analog Integrated Circuit and Signal Processing, 58, 171–178. doi:10.1007/s10470-008-9232-3.

    Article  Google Scholar 

  2. Bajer, J., Lahiri, A., & Biolek, D. (2011). Current-mode CCII+ based oscillator circuits using a conventional and a modified Wien-bridge with all capacitors grounded. Radioengineering, 20, 245–250.

    Google Scholar 

  3. Yuce, E., Tokat, S., Kizilkaya, A., & Cicekoglu, O. (2006). CCII-based PID controllers employing grounded passive components. International Journal of Electronics and Communications, 60, 399–403. doi:10.1016/j.aeue.2005.03.017.

    Article  Google Scholar 

  4. Lo, Y. K., Chien, H. C., & Chiu, H. J. (2010). Current-input OTRA Schmitt trigger with dual hysteresis mode. International Journal of Circuit Theory and Applications, 38, 739–746. doi:10.1002/cta.584.

    Article  MATH  Google Scholar 

  5. Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. London: Kluwer.

    Google Scholar 

  6. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current mode approach. London: Peter Peregrinus Ltd.

    Google Scholar 

  7. Fabre, A., Saaid, O., Wiest, F., & Boucherron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and application, 43, 82–91. doi:10.1109/81.486430.

    Article  Google Scholar 

  8. Sedra, A., & Smith, K. C. (1970). A second generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17, 132–134. doi:10.1109/TCT.1970.1083067.

    Article  Google Scholar 

  9. Barthelemy, H., & Fabre, A. (2002). A second generation current-controlled conveyor with negative intrinsic resistance. IEEE Transactions on Circuits and Systems-I, 49, 63–65. doi:10.1109/81.974875.

    Article  Google Scholar 

  10. Chen, H. P. (2010). Single CCII-based voltage-mode universal filter. Analog Integrated Circuit and Signal Processing, 62, 259–262. doi:10.1007/s10470-009-9345-3.

    Article  Google Scholar 

  11. Wang, C., Liu, H., & Zhao, Y. (2008). A new current-mode current-controlled universal filter based on CCCII (±). Circuits, Systems & Signal Processing, 27, 673–682. doi:10.1007/s00034-008-9050-y.

    Article  Google Scholar 

  12. Horng, J. W., & Jhao, Z. Y. (2013). Voltage-mode universal biquadratic filter using single DVCC. ISRN Electronics. doi:10.1155/2013/125746.

    Google Scholar 

  13. Gokcen, A., Kilinc, S., & Cam, U. (2011). Fully integrated universal biquads using operational transresistance amplifiers with MOS-C realizations. Turkish Journal of Electrical Engineering and Computer Science, 19, 363–372. doi:10.3906/elk-1002-416.

    Google Scholar 

  14. Yuce, E. (2009). Voltage-mode multifunction filter employing a single DVCC and grounded capacitor. IEEE Transactions on Instrumentation and Measurement, 58, 2216–2221. doi:10.1109/TIM.2009.2013671.

    Article  Google Scholar 

  15. Fabre, A., & Alami, M. (1995). Universal current mode biquad implemented from two second generation current conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and application, 42, 383–385. doi:10.1109/81.401151.

    Article  Google Scholar 

  16. Chen, H. P., & Chang, C. M. (2003). Universal capacitor-grounded voltage-mode filter with three inputs and a single output. International Journal of Electronics, 90, 401–406. doi:10.1080/00207210310001612068.

    Article  Google Scholar 

  17. Ozoguz, S., & Gunes, E. O. (1996). Universal filter with three inputs using CCII+. Electronics Letters, 32, 2134–2135. doi:10.1049/el:19961454.

    Article  Google Scholar 

  18. Myderrizi, I., Minaei, S., & Yuce, E. (2011). An electronically fine tunable multi-input single-output universal filter. IEEE Transactions on Circuits and Systems-Part-II Express Briefs (TCAS-II), 58(6), 356–360. doi:10.1109/TCSII.2011.2158168.

    Article  Google Scholar 

  19. Gunes, E. O., & Fuat, A. (1995). Realisation of nth-order voltage transfer function using CCII+. Electronics Letters, 31, 13. doi:10.1049/el:19950751.

    Article  Google Scholar 

  20. Acar, C. (1996). Nth-order low pass voltage transfer function synthesis using CCII+ s: Signal flow graph approach. Electronics Letters, 32, 3. doi:10.1049/el:19960136.

    Google Scholar 

  21. Acar, C., & Ozoguz, S. (1996). High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers. Electronics Letters, 32, 22. doi:10.1049/el:19961359.

    Article  Google Scholar 

  22. Acar, C., & Ozoguz, S. (2000). nth-order current transfer function synthesis using current differencing buffered amplifier: Signal-flow graph approach. Microelectronics Journal, 31, 49–53. doi:10.1016/S0026-2692(99)00088-9.

    Article  Google Scholar 

  23. Kuntman, H., Çiçekoglu, O., & Ozcan, S. (2002). Realization of current-mode third order Butterworth filters employing equal valued passive elements and unity gain buffers. Analog Integrated Circuits and Signal Processing, 30, 253–256. doi:10.1023/A:1014488619452.

    Article  Google Scholar 

  24. Horng, J. W. (2009). High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioengineering, 18, 4.

    Google Scholar 

  25. Ghosh, M., Paul, S. K., Ranjan, R. K., & Ranjan, A. (2013). Third order universal filter using single operational transresistance amplifier. Journal of Engineering. doi:10.1155/2013/317296.

    Google Scholar 

  26. Ranjan, A., Ghosh, M., & Paul, S. K. (2014). Third-order voltage-mode active-C band pass filter. International Journal of Electronics, 102, 781–791. doi:10.1080/00207217.2014.942803.

    Article  Google Scholar 

  27. Yuce, E., & Minaei, S. (2008). On the realization of high-order current mode filter employing current controlled conveyors. Computers & Electrical Engineering, 34, 165–172. doi:10.1016/j.compeleceng.2007.04.001.

    Article  MATH  Google Scholar 

  28. Altuntas, E., & Toker, A. (2002). Realization of voltage and current mode KHN biquads using CCCII. International Journal of Electronics and Communications, 56, 45–49. doi:10.1078/1434-8411-54100071.

    Article  Google Scholar 

  29. Akerberg, D., & Mossberg, K. (1974). A versatile active RC building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Transactions on Circuits and Systems, 3, 75–78. doi:10.1109/TCS.1974.1083785.

    Article  Google Scholar 

  30. Fabre, A., Saaid, O., & Barthelemy, H. (1995). On the frequency limitations of the circuits based on second generation current conveyors. Analog Integrated Circuits and Signal Processing, 7, 113–129. doi:10.1007/BF01239166.

    Article  Google Scholar 

  31. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1997). Low power current mode second order band pass IF filter. IEEE Transactions on Circuits and Systems II, 44, 436–445. doi:10.1109/82.592570.

    Article  Google Scholar 

  32. Ercan, H., Tekin, S. A., & Alc, Mustafa. (2013). Low-voltage low-power multifunction current-controlled conveyor. International Journal of Electronics. doi:10.1080/00207217.2014.897382.

    Google Scholar 

  33. Lin, Y., & Wang, C. (2016). Current-mode multi-scroll chaos generator employing CCCII. Electronics Letters, 52(15), 1295–1297. doi:10.1049/el.2016.1329.

    Article  Google Scholar 

  34. Psychalinos, C., & Souliotis, G. (2010). Low-voltage current controlled current conveyor. Analog Integrated Circuits and Signal Processing. doi:10.1007/s10470-009-9416-5.

    Google Scholar 

  35. Farshidi, E., & Keramatzadeh, A. (2014). A new approach for low voltage CMOS based on current-controlled conveyors. International Journal of Engineering, 27(5), 723–730. doi:10.5829/idosi.ije.2014.27.05b.07.

    Google Scholar 

  36. Lv, Zhao, & Wang, C. (2015). A novel CMOS CCCII based on cross-coupled differential transistor pair and its application. Wireless Personal Communications. doi:10.1007/s11277-015-2905-1.

    Google Scholar 

  37. Pennisi, S. (2002). A low-voltage design approach for class AB current-mode circuits. IEEE Transactions on Circuits and Systems-part II: Analog and Digital Signal Processing, 49(4), 273–279. doi:10.1109/TCSII.2002.801463.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Perumalla, S., Kumar, R. et al. Third order voltage mode universal filter using CCCII. Analog Integr Circ Sig Process 90, 539–550 (2017). https://doi.org/10.1007/s10470-016-0890-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0890-2

Keywords

Navigation