Skip to main content
Log in

Analytical formulation of transient oscillation amplitude in rotary traveling wave oscillators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an accurate analysis for deriving transient oscillation amplitude of Rotary Traveling Wave Oscillators (RTWOs) as a transmission-line based and high frequency circuit. The procedure of the paper is based on considering the nonlinear behavior of negative transconductors that are used for loss compensation of the transmission line. Finally, a closed-form expression for the time-domain amplitude of the RTWOs is obtained. The proposed useful and accurate expression could be used for designing the RTWOs for high performance-high speed systems. Also, it enables us to analyze and synthesize the oscillators with the desired transient behavior. This aspect of the RTWOs is not studied in previous works. The proposed theoretical results are then compared with accurate simulations. Simulations have been done in 0.18 μm CMOS technology with 1.8 V supply voltage. Results show less than 10% difference in steady state oscillation amplitude of theoretical expression and simulations. Considering the nonlinear equation of the RTWOs amplitude, complicated type of solving, simplifications and its numerical solution, the proposed derived expression has a good agreement with simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee, J., & Razavi, B. (2003). A 40 Gb/S clock and data recovery circuit in 0.18 μm cmos technology. IEEE Journal of Solid State Circuits, 38(12), 2181–2190.

    Article  Google Scholar 

  2. Le Grand de Mercey, G. (2004). 18 GHz–36 GHz rotary traveling wave voltage controlled oscillator in a cmos technology. Ph.D. dissertation, Bundeswehr Universitat, Neubiberg.

  3. Ben Abdeljelil, F, Tatinian, W., Carpineto, L., Jacquemod, G. (2009). Design of a cmos 12 GHz rotary travelling wave oscillator with switched capacitor tuning. IEEE Radio Frequency Integrated Circuits Symposium, pp 579–582.

  4. Ahmadihaji, A., & Nabavi, A. (2014). Design of a 30 GHz rotary traveling wave oscillator with improved frequency tuning range in 0.18 µm cmos technology. International Journal of Electronics and Communications, 68(11), 1053–1057.

    Article  Google Scholar 

  5. Bai, Z., Zhou, X., Mason, R. D., & Allan, G. (2015). Low-phase noise clock distribution network using rotary traveling-wave oscillators and built-in self-test phase tuning technique. IEEE Transactions On Circuits And Systems—II: Express Briefs, 62(1), 41–45.

    Google Scholar 

  6. O’Mahony, F., Yue, C. P., Horowitz, M. A., & Wong, S. S. (2003). A 10-GHz global clock distribution using coupled standing-wave oscillators. IEEE Journal of Solid-State Circuits, 38(11), 1813–1820.

    Article  Google Scholar 

  7. Moroni, A., Genesi, R., & Manstretta, D. (2014). Analysis and design of a 54 GHz distributed “hybrid” wave oscillator array with quadrature outputs. IEEE Journal of Solid-State Circuits, 49(5), 1158–1172.

    Article  Google Scholar 

  8. Pontón, M., Suárez, A., & Stevenson Kenney, J. (2014). Rotary traveling-wave oscillator with differential nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 62(5), 1149–1161.

    Article  Google Scholar 

  9. Nouri, N., & Buckwalter, J. F. (2011). A 45-GHz rotary-wave voltage-controlled oscillator. IEEE Transactions on Microwave Theory and Techniques, 59(2), 383–392.

    Article  Google Scholar 

  10. Takinami, K., Walsworth, R., Osman, S., & Beccue, S. (2010). Phase-noise analysis in rotary traveling-wave oscillators using simple physical model. IEEE Transactions on Microwave Theory and Techniques, 58(6), 1465–1474.

    Article  Google Scholar 

  11. Zhang, C., Wang, Z., Zhao, Y., & Park, S. M. (2012). A 15 GHz, -182 dBc/Hz/mW FOM, rotary traveling wave vco in 90 nm cmos. IEEE Microwave and Wireless Components Letters, 22(4), 206–208.

    Article  Google Scholar 

  12. Chien, J.-C., & Liang-Hung, L. (2007). A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18 μm cmos. IEEE Microwave and Wireless Components Letters, 17(10), 724–726.

    Article  Google Scholar 

  13. Takinami, K., & Walsworth, R. (2010). Phase error calibration technique for rotary traveling wave oscillators. IEEE Journal of Solid-State Circuits, 45(11), 2433–2444.

    Google Scholar 

  14. Chen, Y., & Pedrotti, K. D. (2011). Rotary traveling-wave oscillators, analysis and simulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1), 77–87.

    Article  MathSciNet  Google Scholar 

  15. Wood, J., Edwards, T. C., & Lipa, S. (2001). Rotary traveling-wave oscillator arrays: A new clock technology. IEEE Journal of Solid-State Circuits, 36(11), 1654–1665.

    Article  Google Scholar 

  16. Sridhar, R. (1960). A general method for deriving the describing functions for a certain class of nonlinearities. IRE Transactions on Automatic Control, 5(2), 135–141.

    Article  Google Scholar 

  17. Tsividis, Y. P. (1987). Operation and modeling of the mos transistor (pp. 141–148). New York: McGraw-Hill.

    Google Scholar 

  18. Ebrahimi, A., Naimi, H. M., & Adrang, H. (2011). Remarks on transient amplitude analysis of mos cross-coupled oscillators. IEICE Transactions on Electronics, 94, 231–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soolmaz Abbasalizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasalizadeh, S., Miar-Naimi, H. Analytical formulation of transient oscillation amplitude in rotary traveling wave oscillators. Analog Integr Circ Sig Process 90, 669–679 (2017). https://doi.org/10.1007/s10470-016-0877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0877-z

Keywords

Navigation