Skip to main content

Advertisement

Log in

An area-and-power-efficient 8.4-bit ENOB 30 MS/s SAR ADC in 65 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Area and power consumption are two main concerns for the electronics towards the digitalization of in-probe 3D ultrasound imaging systems. This work presents a 10-bit 30 MS/s successive approximation register analog-to-digital converter, which achieves good area efficiency as well as power efficiency, by using a symmetrical MSB-capacitor-split capacitor array with customized small-value finger capacitors. Moreover, simplified dynamic digital logic and a dynamic comparator have been designed. Fabricated in a 65 nm CMOS technology, the core circuit only occupies 0.016 mm2. The ADC achieves a signal-to-noise ratio of 52.2 dB, and consumes 61.3 μW at 30 MS/s from a 1 V supply voltage, resulting in a figure of merit (FoM) of 6.2 fJ/conversion-step. The FoM defined by including the area is 0.1 mm2 fJ/conversion-step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fenster, A., & Downey, D. (1996). 3-D ultrasound imaging: A review. IEEE Engineering in Medicine Biology, 15(6), 41–51.

    Article  Google Scholar 

  2. Chen, K., et al. (2014). A column-row-parallel ultrasound imaging architecture for 3D plane-wave imaging and Tx 2nd-order harmonic distortion (HD2) reduction. In Proceedings of IEEE ultrasonics symposium (pp. 317–320).

  3. Black, W. C., & Stephens, D. (1994). CMOS chip for invasive ultrasound imaging. IEEE Journal of Solid-State Circuits, 29(11), 1381–1387.

    Article  Google Scholar 

  4. Um, J. Y., Kim, Y. J., Cho, S. E., Chae, M. K., Song, J., Kim, B., et al. (2014). An analog-digital hybrid RX beamformer chip with non-uniform sampling for ultrasound medical imaging with 2D CMUT array. IEEE Transactions on Biomedical Circuits and Systems, 8(6), 799–809.

    Article  Google Scholar 

  5. Kaviani, K., Oralkan, O., Khuri-Yakub, P., & Wooley, B. A. (2003). A multichannel pipeline analog-to-digital converter for an integrated 3-D ultrasound imaging system. IEEE Journal of Solid-State Circuits, 38(7), 1266–1270.

    Article  Google Scholar 

  6. Nakamura, K., Hotta, M., Carley, L. R., & Allsot, D. J. (1995). An 85 mW, 10 b, 40 M sample/s CMOS parallel-pipelined ADC. IEEE Journal of Solid-State Circuits, 30(3), 173–183.

    Article  Google Scholar 

  7. Giannini, V., Nuzzo, P., Chironi, V., Baschirotto, A., Van der Plas, G., & Craninckx, J. (2008). An 820 μW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS. In IEEE international solid-state circuits conference, 2008 (ISSCC 2008). Digest of Technical Papers (pp. 238–610).

  8. Yoshioka, M., Ishikawa, K., Takayama, T., & Tsukamoto, S. (2010). A 10 b 50 MS/s 820 μW SAR ADC with on-chip digital calibration. 2010 IEEE International Solid-State Circuits Conference - (ISSCC) (pp. 384–385). San Francisco, CA.

  9. Fredenburg, J., & Flynn, M. (2012). A 90 MS/s 11 MHz bandwidth 62 dB SNDR noise-shaping SAR ADC. In 2012 IEEE international solid-state circuits conference digest of technical papers (ISSCC) (pp. 468–470).

  10. Wan, S.-H., et al. (2013). A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers. In IEEE A-SSCC 2013 (pp. 293–296).

  11. Liu, C.-C., Chang, S. J., Huang, G. Y., & Zu Lin, Y. (2010). A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731–740.

    Article  Google Scholar 

  12. Tai, H. Y., Hu, Y. S., Chen, H. W., & Chen, H. S. (2014). A 0.85 fJ/conversion-step 10 b 200 kS/s subranging SAR ADC in 40 nm CMOS. In IEEE ISSCC digest of technical papers (pp. 196–197).

  13. Harpe, P., Cantatore, E., & van Roermund, A. (2013). A 2.2/2.7 fJ/conversion-step 10/12 b 40 kS/s SAR ADC with data-driven noise reduction. In 2013 IEEE International ISSCC (pp. 270–271).

  14. Yaul, F. M., & Chandrakasan, A. P. (2014). A 10 b 0.6 nW SAR ADC with data-dependent energy savings using LSB-first successive approximation. In 2014 IEEE international ISSCC (pp. 198–199).

  15. van Elzakker, M., van Tuijl, E., Geraedts, P., Schinkel, D., Klumperink, E., & Nauta, B. (2008). A 1.9 μW 4.4 fJ/conversion-step 10b 1MS/s charge-redistribution ADC. In IEEE International Solid-state circuits conference, 2008 (ISSCC 2008). Digest of technical papers (pp. 244–610).

  16. Ding, M., Harpe, P., Liu, Y.-H., Busze, B., Philips, K., & de Groot, H. (2015). 26.2 A 5.5 fJ/conv-step 6.4MS/S 13b SAR ADC utilizing a redundancy-facilitated background error-detection-and-correction scheme. In IEEE international Solid-state circuits conference—(ISSCC) (pp. 1–3).

  17. Liou, C.-Y., & Hsieh, C.-C. (2013). A 2.4-to-5.2 fJ/conversion-step 10 b 0.5-to-4 MS/s SAR ADC with charge-average switching DAC in 90 nm CMOS. In 2013 IEEE international solid-state circuits conference digest of technical papers (ISSCC) (pp. 280–281).

  18. Zhu, Y., Chan, C.-H., Chio, U.-F., Sin, S.-W., Seng-Pan, U., Martins, R. P., et al. (2014). Split-SAR ADCs: Improved linearity with power and speed optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 372–383.

  19. Wei, G., & Mirabbasi, S. (2012). A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated split-capacitor DAC. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1275–1278).

  20. Chen, Y., Zhu, X., Hirotaka, T., Kibune, M., Tomita, Y., Hamada, T., et al. (2009). Split capacitor DAC mismatch calibration in successive approximation ADC. In IEEE custom integrated circuits conference, 2009 (CICC ‘09) (pp. 279–282).

  21. Huang, G.-Y., Chang, S.-J., Lin, Y.-Z., Liu, C.-C., & Huang, C.-P. (2013). A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS. In IEEE A-SSCC, 2013 (pp. 289–292).

  22. Harpe, P. J. A., Zhou, C., Bi, Y., van der Meijs, N. P., Wang, X., Philips, K. et al. (2011). A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for low energy radios. IEEE Journal of Solid-State Circuits, 46(7), 1585–1595.

  23. Liu, C.-C., Chang, S.-J., Huang, G.-Y., et al. (2010). A 1 V 11 fJ/conversion-step 10 bit 10 MS/s asynchronous SAR ADC in 0.18 μm CMOS. In IEEE symposium on VLSI circuits (VLSIC), 2010 (pp. 241–242).

  24. Xu, Y., & Ytterdal, T. (2014). A 7-bit 40 MS/s single-ended asynchronous SAR ADC in 65 nm CMOS. Analog integrated circuit and signal processing (pp. 1–9). Berlin: Springer.

  25. Liu, M. (2006). Demystifying switched capacitor circuits, chapter 7 advanced switched-capacitor circuit techniques. ISBN 978-0-7506-7907-7.

  26. Xu, Y., Harpe, P., & Ytterdal, T. (2015). A 4.5 fJ/conversion-step 9-bit 35 MS/s configurable-gain SAR ADC in a compact area. In IEEE ISCAS, (pp. 2437–2440).

Download references

Acknowledgments

The authors would like to thank the Mixed-signal Microelectronics group in Eindhoven University of Technology, The Netherlands for their support in measurements. This work is financially supported by the Research Council of Norway through the project Microsystems for Medical Ultrasound Video Cameras (192456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Harpe, P. & Ytterdal, T. An area-and-power-efficient 8.4-bit ENOB 30 MS/s SAR ADC in 65 nm CMOS. Analog Integr Circ Sig Process 90, 17–27 (2017). https://doi.org/10.1007/s10470-016-0862-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0862-6

Keywords

Navigation