Skip to main content
Log in

A 154-μW 80-dB SNDR analog-to-digital front-end for digital hearing aids

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low-power, low-noise analog-to-digital front-end for digital hearing aids consisting of a preamplifier and a delta-sigma (DS) ADC with a decimation filter is presented. The high-input-impedance preamplifier has a variable gain from 14 to 23 dB. The power consumption of the preamplifier is kept low by employing operational amplifiers with class-AB output and a capacitive anti-aliasing filter. The DS modulator employs a 4th order feed-forward topology with 6-level quantization to reduce the power consumption and distortion. The designed front-end has been implemented using a 130 nm CMOS process and achieved 82.1 dB SNR and 80.1 dB SNDR over a 7.5 kHz signal band, which satisfies the requirement for digital hearing aids. The total chip dissipates a power of 154 μW from a 1.2 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Schaub, A. (2008). Digital hearing aids. New York: Thieme Medical Publishes.

    Google Scholar 

  2. Kim, S., Lee, J., Song, S., Cho, N., & Yoo., H. (2005). A 0.9-V 67- analog front-end using adaptive-SNR technique for digital hearing aid. In Proc. 2005 IEEE International Symposium on Circuits and Systems, 740–743.

  3. Neuteboom, H., Kup, B. M. J., & Janssens, M. (1997). A DSP based hearing instrument IC. IEEE Journal of Solid-State Circuits, 32(11), 1790–1806.

    Article  Google Scholar 

  4. Gata, D. G., Sjursen, W., Hochschild, J. R., Fattaruso, J. W., Fang, L., Iannelli, G. R., et al. (2002). A 1.1-V 270- mixed-signal hearing aid chip. IEEE Journal of Solid-State Circuits, 37(12), 1670–1678.

    Article  Google Scholar 

  5. Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters. Piscataway: IEEE Press.

    Google Scholar 

  6. Ballou, G. (2009). Electroacoustic devices: microphones and loudspeakers. Burlington: Focal Press.

    Google Scholar 

  7. George Gata, D., et al. (2002). A 1.1-V 270-uA mixed-signal hearing aid chip. IEEE Journal of Solid-State Circuits, 37(12), 1670–1678.

    Article  Google Scholar 

  8. Stevens, S. S., & Warshofsky, F. (1965). Sound and hearing. New York: Life Science Library.

    Google Scholar 

  9. Self, D. (2006). Audio power amplifier design handbook (4th ed.). Oxford: Newnes-Elsevier.

    Google Scholar 

  10. Cabot, R. C. (1999). Fundamentals of modern audio measurement. Journal of Audio Engineering Society, 47(9), 738–744, 746–762.

  11. Silva, J., Moon, U., Steensgaard, J., & Temes, G. C. (2001). Wideband low-distortion delta-sigma ADC topology. IET Electronics Letters, 37(12), 737–738.

    Article  Google Scholar 

  12. Gharbiya, A., & Johns, D. A. (2006). On the implementation of input-feedforward delta-sigma modulators. IEEE Transactions on Circuits and Systems-II: Express Briefs, 53(6), 453–457.

    Article  Google Scholar 

  13. Lee, K., & Temes, G. C. (2009). Improved architecture for low-distortion ΔΣ ADCs. IET Electronics Letters, 45(14), 730–731.

    Article  Google Scholar 

  14. Crochiere, R. E., & Rabiner, L. R. (1983). Multi-rate digital signal processing. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  15. Hogenauer, E. B. (1981). An economical class of digital filters for decimation and interpolation. IEEE Transactions on Acoustic, Speech and Signal Processing, 29(2), 155–162.

    Article  Google Scholar 

  16. Baird, R. R., & Fiez, T. S. (1995). Improved ΔΣ DAC linearity using data weighted averaging. Proceedings of the 1995 IEEE International Symposium on Circuits Systems (ISCAS), 1, 13–16.

    Google Scholar 

  17. Enz, C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of Op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proceedings of IEEE, 84(11), 1584–1614.

    Article  Google Scholar 

  18. Schreier, R., Silva, J., Steensgaard, J., & Temes, G. C. (2005). Design-oriented estimation of thermal noise in switched-capacitor ciruits. IEEE Trans. Circuits and Systems I, 52(11), 2358–2368.

    Article  Google Scholar 

  19. Im, S., & Park, S.-G. (2016). Thermal noise analysis of switched-capacitor integrators with correlated double sampling. International Journal of Circuit Theory and Applications. doi:10.1002/cta.2214.

    Google Scholar 

  20. Ki, W.-H., & Temes, G. C. (1990). Offset-compensated switched-capacitor integrators. Proceedings of the 1995 IEEE International Symposium on Circuits Systems (ISCAS), 4, 2829–2832.

    Google Scholar 

  21. Roh, J., Byun, S., Choi, Y., Roh, H., Kim, Y., & Kwon, J. (2008). A 0.9-V 60-μW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range. IEEE Journal of Solid-State Circuits, 43(2), 361–370.

    Article  Google Scholar 

  22. Gregorian, R. (1999). Introduction to CMOS Op-amps and comparators. New York: Wiley.

    Google Scholar 

  23. Gray, P. R., & Meyer, R. G. (1982). MOS operational amplifier design—A tutorial overview. IEEE Journal of Solid-State Circuits, 17(6), 969–982.

    Article  Google Scholar 

  24. Hogervorst, R., & Huijsing, J. H. (1996). Design of low-voltage low power operational amplifier cells. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  25. Jiang, et al. (2012). A low-power, high-fidelity stereo audio codec in 0.13 m CMOS. IEEE Journal of Solid-State Circuits, 47(5), 1221–1231.

    Article  Google Scholar 

  26. Le, H. B., Nam, J. W., Ryu, S. T., & Lee, S. G. (2009). Single-chip A/D converter for digital microphones with on-chip preamplifier and time-domain noise isolation. IET Electronics Letters, 45(3), 151–153.

    Article  Google Scholar 

  27. Bajdechi, O., & Huijsing, J. H. (2002). A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE Journal of Solid-State Circuits, 37(3), 279–285.

    Article  Google Scholar 

  28. Picolli, L., Grassi, M., Fornasari, A., & Malcovati, P. (2011). A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones. Analog Integrated Circuits and Signal Processing, 66(2), 223–233.

    Article  Google Scholar 

  29. Barbieri, A., & Nicollini, G. (2014). A 470 μA direct readout circuit for electret and MEMS digital microphones. Analog Integrated Circuits and Signal Processing, 81(1), 229–240.

    Article  Google Scholar 

  30. Du, D., & Odame, K. (2014). A microphone readout interface with 74-dB SNDR. Analog Integrated Circuits and Signal Processing, 81(1), 241–252.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the R&D program of Ministry of Trade, Industry and Energy (MOTIE)/Korea evaluation institute of industrial technologies (KEIT) [10063683, Ultra-precision and ultra-low-power analog circuit IP for smart sensors of mobile devices]. The CAD tools were provided by IC Design Education Center (IDEC), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Gyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, S., Park, SG. A 154-μW 80-dB SNDR analog-to-digital front-end for digital hearing aids. Analog Integr Circ Sig Process 89, 383–393 (2016). https://doi.org/10.1007/s10470-016-0850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0850-x

Keywords

Navigation