Skip to main content
Log in

Design methodology for low power RF LNA based on the figure of merit and the inversion coefficient

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The complexity of radiofrequency circuit design comes from the large number of parameters to be adjusted. Constant node shrink in CMOS process and variation of technology skills significantly contribute to this complexity. The paper reports on a reliable and portable design methodology based on a low-power figure of merit (FOM) and inversion coefficient applied to the design of a low noise amplifier (LNA). The design procedure considers the circuit specifications and the optimization of the FOM. As a case of study it is applied to 2.4 GHz LNA designed in a 28 nm technology then exploited to compare different CMOS technology nodes: 28, 65, 130 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Dumesnil, E., Nabki, F., and Boukadoum, M. (2014). « RF-LNA circuit synthesis by genetic algorithm-specified artificial neural network. In 2014 21st IEEE international conference on electronics, circuits and systems (ICECS) (pp. 758–761).

  2. Rahnama, M., Gilmalek, Y. M., and Kordalivand, A. M. (2010). Ultra wide-band LNA using RFCMOS technology and tunability band with neural network. In 2010 IEEE control and system graduate research colloquium (ICSGRC) (pp. 75–79).

  3. Enz, C. C., & Vittoz, E. A. (2006). Charge-based MOS transistor modeling. Chichester: Wiley.

    Book  Google Scholar 

  4. Tsividis, Y. (1999). Operation and modeling of the MOS transistor (2nd ed.). New York: Mc-Graw Hill.

    Google Scholar 

  5. Vittoz, E. A., & Fellrath, J. (1977). CMOS analog integrated circuits based on weak inversion operation. IEEE Journal of Solid-State Circuits, 12(3), 224–231.

    Article  Google Scholar 

  6. Song, I., & Park, B.-G. (2008). A simple figure of merit of RF MOSFET for low-noise amplifier design. IEEE Electron Device Letters, 29(12), 1380–1382.

    Article  Google Scholar 

  7. Shameli, A., Heydari, P. (2004). Ultra-low power RFIC design using moderately inverted MOSFETs: An analytical/experimental study, RFCI.

  8. Mangla, A., Chalkiadaki, M.-A., Fadhuile, F., Taris, T., Deval, Y., & Enz, C. C. (2013). Design methodology for ultra low-power analog circuits using next generation BSIM6 MOSFET compact model. Microelectronics Journal, 44(7), 570–575.

    Article  Google Scholar 

  9. Deen, M. J., Chen, C.-H., Asgaran, S., Rezvani, G., Tao, J., & Kiyota, Y. (2006). High-frequency noise of modern MOSFETs: Compact modeling and measurement issues. IEEE Transactions on Electron Devices, 53(9), 2062–2081.

    Article  Google Scholar 

  10. Ng, T. C., Swe, T. N., Yeo, K.-S., Chew, K. W., Ma, J.-G., & Do, M. (2001). Small signal model and efficient parameter extraction technique for deep submicron MOSFETs for RF applications. IEEE Proceedings of Circuits Devices Systems, 148(1), 35–39.

    Article  Google Scholar 

  11. Enz, C. C., & Cheng, Y. (2000). MOS transistor modeling for RF IC design. IEEE Journal of Solid-State Circuits, 35(2), 186–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fadhuile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhuile, F., Taris, T., Deval, Y. et al. Design methodology for low power RF LNA based on the figure of merit and the inversion coefficient. Analog Integr Circ Sig Process 87, 275–287 (2016). https://doi.org/10.1007/s10470-016-0718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0718-0

Keywords

Navigation