Skip to main content
Log in

Robust test for structural instability in dynamic factor models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a robust test for structural breaks in dynamic factor models. The proposed framework considers structural changes when the underlying high-dimensional time series is contaminated by outlying observations, which are often observed in many real applications such as fMRI, economics and finance. We propose a test based on the robust estimation of a vector autoregressive model for principal component factors using minimum density power divergence. The simulations study shows excellent finite sample performance, higher powers while achieving good sizes in all cases considered. Our method is illustrated to the resting state fMRI series to detect brain connectivity changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, A. C., Koopman, S.-J., Shephard, N. (1997). Detecting shocks: Outliers and breaks in time series. Journal of Econometrics, 80(2), 387–422.

    Article  MathSciNet  Google Scholar 

  • Baek, C., Pipiras, V. (2014). On distinguishing multiple changes in mean and long-range dependence using local Whittle estimation. Electronic Journal of Statistics, 8, 931–964.

    Article  MathSciNet  Google Scholar 

  • Baek, C., Davis, R. A., Pipiras, V. (2018). Periodic dynamic factor models: Estimation approaches and applications. Electronic Journal of Statistics, 12(2), 4377–4411.

    Article  MathSciNet  Google Scholar 

  • Baek, C., Gates, K. M., Leinwand, B., Pipiras, V. (2021). Two sample tests for high-dimensional autocovariances. Computational Statistics & Data Analysis, 153, 107067. https://doi.org/10.1016/j.csda.2020.107067.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171.

    Article  MathSciNet  Google Scholar 

  • Bai, J., Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

    Article  MathSciNet  Google Scholar 

  • Bai, J., Ng, S. (2007). Determining the number of primitive shocks in factor models. Journal of Business & Economic Statistics, 25(1), 52–60.

    Article  MathSciNet  Google Scholar 

  • Bai, J., Ng, S. (2008). Large dimensional factor analysis. Delft: Now Publishers Inc.

    Book  Google Scholar 

  • Balke, N. S., Fomby, T. B. (1994). Large shocks, small shocks, and economic fluctuations: Outliers in macroeconomic time series. Journal of Applied Econometrics, 9(2), 181–200.

    Article  Google Scholar 

  • Basu, A., Harris, I. R., Hjort, N. L., Jones, M. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549–559.

    Article  MathSciNet  Google Scholar 

  • Basu, A., Mandal, A., Martin, N., Pardo, L. (2013). Testing statistical hypotheses based on the density power divergence. Annals of the Institute of Statistical Mathematics, 65, 319–348.

    Article  MathSciNet  Google Scholar 

  • Basu, A., Mandal, A., Martin, N., Pardo, L. (2016). Generalized wald-type tests based on minimum density power divergence estimators. Statistics, 50, 1–26.

    Article  MathSciNet  Google Scholar 

  • Batsidis, A., Horvàth, L., Martin, N., Pardo, L., Zografos, K. (2013). Change-point detection in multinomial data using phi-divergence test statistics. Journal of Multivariate Analysis, 118, 53–66.

    Article  MathSciNet  Google Scholar 

  • Billingsley, P. (1999). Convergence of probability measures. New York, NY: Wiley.

    Book  Google Scholar 

  • Breitung, J., Eickmeier, S. (2011). Testing for structural breaks in dynamic factor models. Journal of Econometrics, 163(1), 71–84.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Dolado, J. J., Gonzalo, J. (2014). Detecting big structural breaks in large factor models. Journal of Econometrics, 180(1), 30–48.

    Article  MathSciNet  Google Scholar 

  • Chen, M., An, H. Z. (1998). A note on the stationarity and the existence of moments of the GARCH model. Statistica Sinica, 8(2), 505–510.

    MathSciNet  MATH  Google Scholar 

  • Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., Lindquist, M. A. (2012). Dynamic connectivity regression: Determining state-related changes in brain connectivity. Neuroimage, 61(4), 907–920.

    Article  Google Scholar 

  • Durio, A., Isaia, E. (2011). The minimum density power divergence approach in building robust regression models. Informatica, 22, 43–56.

    Article  MathSciNet  Google Scholar 

  • Fujisawa, H., Eguchi, S. (2006). Robust estimation in the normal mixture model. Journal of Statistical Planning and Inference, 136, 3989–4011.

    Article  MathSciNet  Google Scholar 

  • Ghosh, A., Basu, A. (2017). The minimum s-divergence estimator under continuous models: the Basu–Lindsay approach. Statistical Papers, 58, 341–372.

    Article  MathSciNet  Google Scholar 

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.

    MATH  Google Scholar 

  • Han, X., Inoue, A. (2015). Tests for parameter instability in dynamic factor models. Econometric Theory, 31(5), 1117–1152.

    Article  MathSciNet  Google Scholar 

  • Iglewicz, B., Hoaglin, D. C. (1993). How to detect and handle outliers, Vol. 16. Milwaukee: ASQC Quality Press.

    Google Scholar 

  • Ledolter, J. (1989). The effect of additive outliers on the forecasts from Arima models. International Journal of Forecasting, 5(2), 231–240.

    Article  Google Scholar 

  • Lee, S., Song, J. (2009). Minimum density power divergence estimator for GARCH models. TEST, 18(2), 316–341.

    Article  MathSciNet  Google Scholar 

  • Lee, T., Kim, M., Baek, C. (2015). Tests for volatility shifts in GARCH against long-range dependence. Journal of Time Series Analysis, 36(2), 127–153.

    Article  MathSciNet  Google Scholar 

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

    Book  Google Scholar 

  • Magnotti, J. F., Billor, N. (2014). Finding multivariate outliers in fMRI time-series data. Computers in Biology and Medicine, 53, 115–124.

    Article  Google Scholar 

  • Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. Neuroimage, 62(2), 1216–1220.

    Article  Google Scholar 

  • Power, J. D., Schlaggar, B. L., Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536–551.

    Article  Google Scholar 

  • Robbins, M., Gallagher, C., Lund, R., Aue A. (2011). Mean shift testing in correlated data. Journal of Time Series Analysis, 32, 498–511.

    Article  MathSciNet  Google Scholar 

  • Song, J. (2020). Robust test for dispersion parameter change in discretely observed diffusion processes. Computational Statistics & Data Analysis, 142, 106832.

    Article  MathSciNet  Google Scholar 

  • Song, J., Baek, C. (2019). Detecting structural breaks in realized volatility. Computational Statistics & Data Analysis, 134, 58–75.

    Article  MathSciNet  Google Scholar 

  • Song, J., Kang, J. (2019). Test for parameter change in the presence of outliers: The density power divergence based approach. arXiv:1907.00004.

  • Stock, J. H., Watson, M. (2009). Forecasting in dynamic factor models subject to structural instability. The Methodology and Practice of Econometrics. A Festschrift in Honour of David F. Hendry, 173, 205.

    MATH  Google Scholar 

  • Stock, J. H., Watson, M. (2011). Dynamic factor models. Oxford: Oxford University Press.

    Google Scholar 

  • Stock, J. H., Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.

    Article  MathSciNet  Google Scholar 

  • Tsay, R. S., Pena, D., Pankratz, A. E. (2000). Outliers in multivariate time series. Biometrika, 87(4), 789–804.

    Article  MathSciNet  Google Scholar 

  • Van Den Heuvel, M. P., Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.

    Article  Google Scholar 

  • Warwick, J. (2005). A data-based method for selecting tuning parameters in minimum distance estimators. Computational Statistics & Data Analysis, 48, 571–585.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

R code is available at https://github.com/crbaek/dpd_VAR. The data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. We would like to thank the Associate Editor and reviewers for many useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changryong Baek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors contributed equally to this article.

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2019R1F1A1057104) (C. Baek), (NRF-2019R1I1A3A01056924) (J. Song), and (NRF-2019R1C1C1004662) (B. Kim).

The online version of this article contains supplementary material.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 196 KB)

Appendix

Appendix

Proof of Lemma 1

Under (A1), there exist a constant mean vector \(\mu \) and a covariance matrix \(\varGamma _0\) of \(Y_t\) such that \(\mu =E(Y_t)\) and \(\varGamma _0=E(Y_tY_t^T)-\mu \mu ^T\) for all t, which implies \(E(Y_{t,i}^2)<\infty \) for all t and \(i=1,\ldots ,r\). Hence, by Lemma S1 of the Supplementary Material and Cauchy–Schwartz inequality, we obtain

$$\begin{aligned} E\left( \sup _{\theta \in \varTheta }\left| \frac{\partial ^2h_{\alpha ,t}(\theta )}{\partial \theta _i\partial \theta _j}\right| \right) <\infty \end{aligned}$$

and

$$\begin{aligned} E\left( \sup _{\theta \in \varTheta }\left| \frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta _i}\frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta _j}\right| \right) \le E\left( \sup _{\theta \in \varTheta }\left| \frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta _i}\right| \sup _{\theta \in \varTheta }\left| \frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta _j}\right| \right) <\infty \end{aligned}$$

for \(i,j=1,\ldots ,\eta \). Therefore, the lemma is validated. \(\square \)

Proof of Lemma 2

Due to the first part of Lemma 1, \(J_{\alpha }\) is finite. Note that

$$\begin{aligned} E\left( \frac{\partial ^2h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T}\right)= & {} E\left\{ E\left( \frac{\partial ^2h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T}\Big |Y_{t-p:t-1}\right) \right\} \\= & {} (1+\alpha )E\left\{ \int f_{\theta _0}^{\alpha -1}(y|Y_{t-p:t-1})\frac{\partial f_{\theta _0}(y|Y_{t-p:t-1})}{\partial \theta }\frac{\partial f_{\theta _0}(y|Y_{t-p:t-1})}{\partial \theta ^T}\mathrm{d}y\right\} . \end{aligned}$$

Letting A be a \(r(r+1)/2\times r(r+1)/2\) diagonal matrix with \(A_{ii}=1\) if \(i=(m-1)(r+1-m/2)+1\) for \(m=1,\ldots ,r\) and 2 otherwise, we can write that for \(\nu =(\nu _1^T,\nu _2^T,\nu _3^T)^T\in {\mathbb {R}}^r\times {\mathbb {R}}^{r^2p} \times {\mathbb {R}}^{r(r+1)/2}\),

$$\begin{aligned}&\nu ^T\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial \theta }\\&\quad =\nu _1^T\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial c}+\nu _2^T\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial vec(A_1,\ldots ,A_p)}+\nu _3^T\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial vech(\varSigma )}\\&\quad =f_{\theta _0}(Y_t|Y_{t-p:t-1})\bigg [\nu _1^T\varSigma _0^{-1}\epsilon _t(\theta _0)+\nu _2^T\left\{ (Y_{t-1}^T,Y_{t-2}^T,\ldots ,Y_{t-p}^T)^T\otimes \varSigma _0^{-1}\epsilon _t(\theta _0)\right\} \\&\qquad -\frac{1}{2}\nu _3^T A vech\left\{ \varSigma _0^{-1}-\varSigma _0^{-1}\epsilon _t(\theta _0)\epsilon _t(\theta _0)^T\varSigma _0^{-1}\right\} \bigg ]\\&\quad :=f_{\theta _0}(Y_t|Y_{t-p:t-1})M_t(\nu ,\theta _0), \end{aligned}$$

where \(\epsilon _t(\theta _0)=Y_t-c_0-A_{01}Y_{t-1}-\cdots -A_{0p}Y_{t-p} \sim N(0,\varSigma _0)\) and the symbol \(\otimes \) stand for Kronecker product. Thus, we have

$$\begin{aligned} \nu ^T(-J_{\alpha })\nu & = (1+\alpha )E\left\{ \int f_{\theta _0}^{\alpha -1}(y|Y_{t-p:t-1})\left( \nu ^T\frac{\partial f_{\theta _0}(y|Y_{t-p:t-1})}{\partial \theta }\right) ^2\mathrm{d}y\right\} \\& = (1+\alpha )E\left\{ f_{\theta _0}^{\alpha -2}(Y_t|Y_{t-p:t-1})\left( \nu ^T\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial \theta }\right) ^2\right\} \\ & = (1+\alpha )E\left\{ f_{\theta _0}^{\alpha }(Y_t|Y_{t-p:t-1})M_t(\nu ,\theta _0)^2\right\} \ge 0. \end{aligned}$$

Since \(M_t(\nu ,\theta _0)\) has a continuous distribution induced from Gaussian random variables, one can see that the equality holds only for \(\nu =0\). Hence, \(J_{\alpha }\) is a non-singular matrix. The non-singularity of \(K_\alpha \) can be shown by similar arguments, so we omit the proof for \(K_\alpha \). \(\square \)

Proof of Lemma 3

Let \(\{ Y_t | t\in {\mathbb {Z}}\}\) be the strictly stationary and ergodic solution to VAR(p) model (3). Recall that \(\{h_{\alpha ,t}(\theta ) | t=1,\ldots ,n\}\) is calculated from the observations \(Y_1,\ldots ,Y_n\) and some initial values for \(Y_{-p},\ldots , Y_0\). To verify the lemma, we introduce stationary version of \(\{h_{\alpha ,t}(\theta ) | t=1,\ldots ,n\}\). Let \(\{h^o_{\alpha ,t}(\theta ) | t\in {\mathbb {Z}}\}\) and \(\{H^o_{\alpha ,t}(\theta ) | t\in {\mathbb {Z}}\}\) be the counterparts of \(\{h_{\alpha ,t}(\theta )\}\) and \(\{H_{\alpha ,t}(\theta )\}\), respectively, obtained by using the solution \(\{ Y_t | t\in {\mathbb {Z}}\}\). Then, \(\{\partial h^o_{\alpha ,t}(\theta _0)/\partial \theta \}\) is a strictly stationary and ergodic process. Further, noting that

$$\begin{aligned}&E\left( f_{\theta _0}^{\alpha -1}(Y_t|Y_{t-p:t-1})\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial \theta }\Big |{\mathcal {F}}_{t-1}\right) \\&\quad =\int f_{\theta _0}^{\alpha }(y|Y_{t-p:t-1})\frac{\partial f_{\theta _0}(y|Y_{t-p:t-1})}{\partial \theta }\mathrm{d}y, \end{aligned}$$

where \({\mathcal {F}}_{t-1}\) be the sigma field generated by \(\{ Y_{t-1}, Y_{t-2},\ldots \}\), we have

$$\begin{aligned}&E\left( \frac{\partial h^o_{\alpha ,t}(\theta _0)}{\partial \theta }\Big |{\mathcal {F}}_{t-1}\right) =(1+\alpha )E\left( \int f_{\theta _0}^{\alpha }(y|Y_{t-p:t-1})\frac{\partial f_{\theta _0}(y|Y_{t-p:t-1})}{\partial \theta }\mathrm{d}y \right. \\&\qquad \left. -f_{\theta _0}^{\alpha -1}(Y_t|Y_{t-p:t-1})\frac{\partial f_{\theta _0}(Y_t|Y_{t-p:t-1})}{\partial \theta }\Big |{\mathcal {F}}_{t-1}\right) =0. \end{aligned}$$

Hence, it follows from the functional limit theorem for martingales (cf. Section 18 in Billingsley 1999) that

$$\begin{aligned} \frac{[ns]}{\sqrt{n}}\frac{\partial H^o_{\alpha ,[ns]}(\theta _0)}{\partial \theta } =\frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} \frac{\partial h^o_{\alpha ,t}(\theta _0)}{\partial \theta }{\mathop {\longrightarrow }\limits ^{w}} K_\alpha ^{1/2}\,B_\eta (s)~~in~~{\mathbb {D}}([0,1],{\mathbb {R}}^\eta ). \end{aligned}$$

Since \(h^o_{\alpha ,t}(\theta _0)=h_{\alpha ,t}(\theta _0)\) for \(t\ge p+1\), one can also see that

$$\begin{aligned}&\sup _{0\le s\le 1} \frac{[ns]}{\sqrt{n}}\left\| \frac{\partial H^o_{\alpha ,[ns]}(\theta _0)}{\partial \theta }- \frac{\partial H_{\alpha ,[ns]}(\theta _0)}{\partial \theta }\right\| \\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{p}\left\| \frac{\partial h^o_{\alpha ,t}(\theta _0)}{\partial \theta }-\frac{\partial h_{\alpha ,t}(\theta _0)}{\partial \theta } \right\| =o(1)\quad a.s., \end{aligned}$$

which establishes the lemma. \(\square \)

Proof of Lemma 4

By Lemma 1, we have

$$\begin{aligned} E \left( \sup _{\theta \in \varTheta } \left\| \frac{\partial ^2 h_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^T }- \frac{\partial ^2 h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T }\right\| \right) <\infty . \end{aligned}$$

Since \(\partial ^2 h_{\alpha ,t}(\theta )/\partial \theta \partial \theta ^T\) is continuous in \(\theta \), for any \(\epsilon >0\), one can take a neighborhood \(N_\epsilon (\theta _0)\) such that

$$\begin{aligned} E \left( \sup _{\theta \in N_\epsilon (\theta _0)} \left\| \frac{\partial ^2 h_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^T }- \frac{\partial ^2 h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T }\right\| \right) <\epsilon \end{aligned}$$
(12)

by decreasing the neighborhood to the singleton \(\theta _0\). Noting that \(\hat{\theta }_{\alpha ,n}\) converges almost surely to \(\theta _0\), we have, for sufficiently large n,

$$\begin{aligned}&\max _{ 1\le k\le n}\frac{k}{n}\left\| \frac{\partial ^2 H_{\alpha ,k}({\bar{\theta }}_{\alpha ,n,k})}{\partial \theta \partial \theta ^T }+J_\alpha \right\| \\&\quad \le \max _{ 1\le k\le n} \frac{k}{n}\left\| \frac{\partial ^2 H_{\alpha ,k}({\bar{\theta }}_{\alpha ,n,k})}{\partial \theta \partial \theta ^T }-\frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }\right\| + \max _{ 1\le k\le n} \frac{k}{n}\left\| \frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }+J_\alpha \right\| \\&\quad \le \frac{1}{n} \sum _{t=1}^n \sup _{\theta \in N_{\epsilon }(\theta _0)} \left\| \frac{\partial ^2 h_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^T }-\frac{\partial ^2 h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T }\right\| + \max _{ 1\le k\le n} \frac{k}{n}\left\| \frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }+J_\alpha \right\| \\&\quad :=I_n +II_n\quad a.s. \end{aligned}$$

Using the ergodic theorem and (12), we can see that

$$\begin{aligned} \lim _{n\rightarrow \infty }I_n = E \left( \sup _{\theta \in N_\epsilon (\theta _0)} \left\| \frac{\partial ^2 h_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^T }- \frac{\partial ^2 h_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^T }\right\| \right) < \epsilon \quad a.s. \end{aligned}$$

Also, from the fact that \(\Vert \partial ^2 H_{\alpha ,n}(\theta _0)/\partial \theta \partial \theta ^T +J_\alpha \Vert = o(1)\) a.s., we have

$$\begin{aligned}&\max _{1\le k \le \sqrt{n}} \frac{k}{n}\left\| \frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }+J_\alpha \right\| \le \frac{1}{\sqrt{n}} \sup _k \left\| \frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }+J_\alpha \right\| =o(1)\quad a.s. \end{aligned}$$

and

$$\begin{aligned}&\max _{\sqrt{n} < k \le n} \left\| \frac{\partial ^2 H_{\alpha ,k}(\theta _0)}{\partial \theta \partial \theta ^T }+J_\alpha \right\| =o(1)\quad a.s., \end{aligned}$$

which yield \(II_n=o(1)\) a.s. The lemma is therefore obtained. \(\square \)

Proof of Lemma 5

By the second result in Lemma 1 and the continuity of \(\partial h_{\alpha ,t}(\theta )/\partial \theta \) in \(\theta \), we can also take a neighborhood \(N_\epsilon (\theta _0)\) such that

$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{1}{n}\sum _{t=1}^n\sup _{\theta \in N_\epsilon (\theta _0)}\left\| \frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta }\frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta ^T}- \frac{\partial h_{\alpha ,t}(\theta _0)}{\partial \theta }\frac{\partial h_{\alpha ,t}(\theta _0)}{\partial \theta ^T}\right\| \nonumber \\&\quad = E\left( \sup _{\theta \in N_\epsilon (\theta _0)}\left\| \frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta }\frac{\partial h_{\alpha ,t}(\theta )}{\partial \theta ^T}- \frac{\partial h_{\alpha ,t}(\theta _0)}{\partial \theta }\frac{\partial h_{\alpha ,t}(\theta _0)}{\partial \theta ^T}\right\| \right) < \epsilon ~~ a.s.~ \end{aligned}$$
(13)

Since \({\hat{\theta }}_n \overset{a.s.}{\longrightarrow } \theta _0\), one can prove the lemma by using (13) and the ergodic theorem. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Song, J. & Baek, C. Robust test for structural instability in dynamic factor models. Ann Inst Stat Math 73, 821–853 (2021). https://doi.org/10.1007/s10463-020-00773-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-020-00773-0

Keywords

Navigation