Skip to main content

Advertisement

Log in

Jackknife empirical likelihood for the difference of two volumes under ROC surfaces

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The volume under a surface (VUS) is an effective measure for evaluating the discriminating power of a diagnostic test with three ordinal diagnostic groups. In this paper, we investigate the difference of two correlated VUS’s to compare two treatments for discrimination of three-class classification data. A jackknife empirical likelihood (JEL) procedure is employed to avoid the variance estimation in the existing methods. We prove that the limiting distribution of the empirical log-likelihood ratio statistic follows a \(\chi ^2\) distribution. Extensive numerical studies show that the JEL confidence intervals outperform those based on the normal approximation method. The proposed method is also applied to the Alzheimer’s disease data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvesen, J. (1969). Jackknifing U-statistics. The Annals of Mathematical Statistics, 40(6), 2096–2100.

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, K. (1996). Exponential distribution: Theory, methods and applications. Amsterdam: CRC Press. illustrated edition.

    Google Scholar 

  • Gong, Y., Peng, L., Qi, Y. (2010). Smoothed jackknife empirical likelihood method for ROC curve. Journal of Multivariate Analysis, 101, 1520–1531.

  • Jing, B. Y., Yuan, J., Zhou, W. (2009). Jackknife empirical likelihood. Journal of the American Statistical Association, 104, 1224–1232.

  • Kowalski, J., Tu, X. M. (2007). Modern applied U-statistics. Hoboken, New Jersey: Wiley.

  • Marshall, A. W., Olkin, I. (1967). A multivariate exponential distribution. Journal of American Statistical Association, 62, 30–41.

  • Mossman, D. (1999). Three-way ROC’s. Medical Decision Making, 19(1), 78–89.

    Article  Google Scholar 

  • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a singlep functional. Biometrika, 75(2), 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1990). Empirical likelihood confidence regions. The Annals of Statistics, 18, 90–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, G., Wang, X., Zhou, W. (2013). Nonparametric statistical inference for P(X \(<\) Y \(<\) Z). The Indian Journal of Statistics, 75-A, 118–138.

  • Sen, P. K. (1960). On some convergence properties of U-statistics. Calcutta Statistical Association Bulletin, 10, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Storandt, M., Hill, R. D. (1989). Very mild senile dementia of the Alzheimer type. II. Psychometric test performance. Archives of Neurology, 46(4), 383–386.

  • Tian, L., Xiong, C., Lai, C. Y., Vexler, A. (2011). Exact confidence interval estimation for the difference in diagnostic accuracy with three ordinal diagnostic groups. Journal of Statistical Planning and Inference, 141(1), 549–558.

  • Wan, S. (2012). An empirical likelihood confidence interval for the volume under ROC surface. Statistics and Probability Letters, 82(7), 1463–1467.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X. (2010). Empirical likelihood with applications. Thesis, National University of Singapore.

  • Wechsler, D. (1955). Manual for the Wechsler adult intelligence scale (Vol. vi). Oxford: Psychological Corporation.

    Google Scholar 

  • Xiong, C., van Belle, G., Miller, J. P., Morris, J. C. (2006). Measuring and estimating diagnostic accuracy when there are three ordinal diagnostic groups. Statistics in Medicine, 2006(25), 1251–1273.

  • Yang, H., Zhao, Y. (2013). Smoothed jackknife empirical likelihood inference for the difference of ROC curves. Journal of Multivariate Analysis, 115, 270–284.

  • Yang, H., Zhao, Y. (2015). Smoothed jackknife empirical likelihood inference for ROC curves with missing data. Journal of Multivariate Analysis, 140, 123–138.

Download references

Acknowledgements

The authors would like to thank two reviewers and the associate editor for their helpful comments, which lead to a significant improvement in the paper. Yichuan Zhao appreciates the support from the NSA Grant (H98230-12-1-0209) and NSF Grants (DMS-1613176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichuan Zhao.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

The variance \(Var(U_n)\) can be estimated by a consistent estimator \({\hat{\sigma }^2}\) as in Sen (1960) and Arvesen (1969),

$$\begin{aligned} {\hat{\sigma }^2}= & {} \dfrac{1}{n_1(n_1-1)}\displaystyle \sum _{i=1}^{n_1}(V_{i,0,0}-\bar{V}_{\cdot ,0,0})^2 +\dfrac{1}{n_2(n_2-1)}\displaystyle \sum _{j=1}^{n_2}(V_{0,j,0}-\bar{V}_{0,\cdot ,0})^2\\&+\dfrac{1}{n_3(n_3-1)}\displaystyle \sum _{k=1}^{n_3}(V_{0,0,k}-\bar{V}_{0,0,\cdot })^2. \end{aligned}$$

Lemma 1

We have the following conclusions.

  1. (a)

    The U-statistic \(U_n\buildrel a.s. \over \rightarrow \theta _0\) as \(min(n_1, n_2, n_3)\rightarrow \infty \);

  2. (b)

    Suppose that \(\sigma ^2_{1,0,0}>0\), \(\sigma ^2_{0,1,0}>0\), \(\sigma ^2_{0,0,1}>0\), and denote \(S^2_{n_1, n_2, n_3}=\sigma ^2_{1,0,0}/n_1+\sigma ^2_{0,1,0}/n_2+\sigma ^2_{0,0,1}/n_3\). As \(\quad min(n_1, n_2, n_3)\rightarrow \infty ,\)

    $$\begin{aligned} \dfrac{U_n-\theta _0}{S_{n_1, n_2, n_3}}\buildrel d \over \rightarrow N(0,1),\quad \end{aligned}$$
    (3)

    and

    $$\begin{aligned} \hat{\sigma }^2-S_{n_1, n_2, n_3}^2=o_p((min(n_1, n_2, n_3))^{-1}). \end{aligned}$$
    (4)

The proof of part (a) and Eqs. (3) and (4) can be found in Arvesen (1969) and Kowalski and Tu (2007).

Lemma 2

Let \(S_n=n^{-1}\sum \nolimits _{l=1}^n(\hat{V}_l-E\hat{V}_l)^2\). We assume the same conditions as (a) and (b) in Theorem 1. Then as \(n_1\rightarrow \infty \),

$$\begin{aligned} S_n=nS^2_{n_1,n_2,n_3}+o_p(1). \end{aligned}$$

Proof of Lemma 2

For \(1\le l\le n_1\), it is clear that

$$\begin{aligned} {\hat{V_l}}-E{\hat{V_l}} =\dfrac{n(n-1)}{(n-3)n_1}(V_{l,0,0}-U_n)+\dfrac{n(n-2n_1-1)}{(n-3)n_1}(U_n-\theta _0), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\dfrac{1}{n_1}\displaystyle \sum _{l=1}^{n_1}(V_{l,0,0}-U_n)(U_n-\theta _0)\\ =&\,(U_n{-}\theta _0)\left\{ \dfrac{1}{n_1n_2n_3}\displaystyle \sum _{i=1}^{n1}\sum _{j=1}^{n2}\sum _{k=1}^{n3} [I(X_{1i}{<}Y_{1j}{<}Z_{1k})-I(X_{2i}{<}Y_{2j}<Z_{2k})]-U_n\right\} \\ =&\,0 .\end{aligned} \end{aligned}$$

As Pan et al. (2013) and Wang (2010) did, we have that

$$\begin{aligned} \displaystyle \sum _{l=1}^{n_1}(\hat{V}_l{-}E\hat{V}_l)^2 =\left[ \dfrac{n(n{-}1)}{(n{-}3)n_1}\right] ^2\displaystyle \sum _{l=1}^{n_1}(V_{l,0,0}-U_n)^2 {+}\left[ \dfrac{n(n{-}2n_1{-}1)}{(n{-}3)n_1}\right] ^2n_1(U_n-\theta _0)^2. \end{aligned}$$

For \(n_1< l\le n_1+n_2\), one has that

$$\begin{aligned} \displaystyle \sum _{l=n_1+1}^{n_1+n_2}(\hat{V}_l-E\hat{V}_l)^2= & {} \left[ \dfrac{n(n-1)}{(n-3)n_2}\right] ^2\displaystyle \sum _{l=n_1}^{n_1+n_2}(V_{0,l,0}-U_n)^2\\&+\left[ \dfrac{n(n-2n_2-1)}{(n-3)n_2}\right] ^2n_2(U_n-\theta _0)^2. \end{aligned}$$

For \(n_1+n_2< l\le n\), we have that (see Pan et al. 2013)

$$\begin{aligned} \displaystyle \sum _{l=n_1+n_2+1}^{n}(\hat{V}_l-E\hat{V}_l)^2= & {} \left[ \dfrac{n(n-1)}{(n-3)n_3}\right] ^2\displaystyle \sum _{l=n_1+n_2}^{n}(V_{0,0,l}-U_n)^2\\&+\left[ \dfrac{n(n-2n_3-1)}{(n-3)n_3}\right] ^2n_3(U_n-\theta _0)^2. \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} S_n =&\,\dfrac{1}{n}\left[ \dfrac{n(n-1)}{(n-3)}\right] ^2 \left[ \dfrac{1}{n_1^2}\displaystyle \sum _{l=1}^{n_1}(V_{l,0,0}-\bar{V}_{\cdot ,0,0})^2 +\dfrac{1}{n_2^2}\displaystyle \sum _{l=n_1+1}^{n_1+n_2}(V_{0,l,0}-\bar{V}_{0,\cdot ,0})^2\right. \\&\left. +\dfrac{1}{n_{3}^2}\displaystyle \sum _{l=n_1+n_2+1}^{n}(V_{0,0,l}-\bar{V}_{0,0,\cdot })^2\right] \\&+\dfrac{1}{n}\left[ \dfrac{n}{(n-3)}\right] ^2 \left[ \dfrac{(n-2n_1-1)^2}{n_1}+\dfrac{(n-2n_2-1)^2}{n_2}+\dfrac{(n-2n_3-1)^2}{n_3}\right] (U_n- \theta _0)^2 .\end{aligned} \end{aligned}$$
(5)

From the LLN of U-statistic, we have the conclusion \(U_n-\theta _0=O_p(n_1^{-1/2})\). The second term in Eq. (5) is

$$\begin{aligned} \dfrac{n}{(n-3)^2}&\left[ \dfrac{(n-2n_1-1)^2}{n_1}+\dfrac{(n-2n_2-1)^2}{n_2}+\dfrac{(n-2n_3-1)^2}{n_3}\right] (U_n- \theta _0)^2\\&\quad =O_p(n^{-1}). \end{aligned}$$

Moreover, the 1st term of Eq. (5) is (cf. Wang 2010)

$$\begin{aligned} \begin{aligned}&n\left( \dfrac{n-1}{n-3}\right) ^2 \left[ \dfrac{1}{n_1^2}\displaystyle \sum _{l=1}^{n_1}\left( V_{l,0,0}-\bar{V}_{\cdot ,0,0}\right) ^2 +\dfrac{1}{n_2^2}\displaystyle \sum _{l=n_1+1}^{n_1+n_2}\left( V_{0,l,0}-\bar{V}_{0,\cdot ,0}\right) ^2\right. \\&\left. +\dfrac{1}{n_3^2}\displaystyle \sum _{l=n_1+n_2+1}^{n}(V_{0,0,l}-\bar{V}_{0,0,\cdot })^2\right] \\ =&\,n\hat{\sigma }^2+o_p(1) .\end{aligned} \end{aligned}$$

Using Eq. (4), we prove Lemma 2. \(\square \)

Lemma 3

Let \(Q_n=\displaystyle \max _{1\le l\le n}|\hat{V}_l-\theta _0|\). Under the same conditions as in Lemma 2, we have \(Q_n=o_p(n^{1/2})\) and \(n^{-1}\sum \nolimits _{l=1}^n|\hat{V}_l-\theta _0|^3=o_p(n^{1/2})\).

Proof of Lemma 3

For \(1\le l\le n_1\), we have (see Wang 2010)

$$\begin{aligned} |\hat{V}_l-E\hat{V}_l| \le \Big |\dfrac{n}{n_1}\dfrac{n-1}{n-3}V_{l,0,0}\Big | +\Big |\dfrac{n}{n_1}\dfrac{n-1}{n-3}U_n\Big |+\Big |\dfrac{n(n-2n_1-1)}{(n-3)n_1}(U_n-\theta _0)\Big |. \end{aligned}$$

Note that \(|V_{l,0,0}|\le \tilde{H}_n\), and \(|U_n|\le \tilde{H}_n\), where

$$\begin{aligned} \tilde{H}_n=\displaystyle \max _{1\le i\le n_1<l\le n_1+n_2<k\le n}|h(X_i,Y_j,Z_k)|. \end{aligned}$$

Therefore, \(|\hat{V}_l-E\hat{V}_l| \le c^*\tilde{H}_n+c^*\tilde{H}_n+ c^{*}|U_n-\theta |\), where \(c^*\) is a constant. Similar to Pan et al. (2013) and Wang (2010), we have \(\tilde{H}_n=o_p(n^{1/2})\) and \(U_n-\theta _0 =O_p(n^{-1/2})\). Therefore, \(|\hat{V}_l-E\hat{V}_l|=o_p(n^{1/2})\) for \(1\le l \le n_1\). For \(n_1<l\le n_1+n_2\), \(|\hat{V}_l-E\hat{V}_l| \le 2c^*\tilde{H}_n+c^*|U_n-\theta _0|.\) Thus, \(|\hat{V}_l-E\hat{V}_l|=o_p(n^{1/2})\) for \(n_1<l\le n_1+n_2\). For \(n_1+n_2<l\le n\), we have \(|\hat{V}_l-E\hat{V}_l|=o_p(n^{1/2})\) similarly as before. Thus \(Q_n=o_p(n^{1/2}).\) Hence,

$$\begin{aligned} n^{-1}\displaystyle \sum _{l=1}^n|\hat{V}_l-E \hat{V}_l|^3 = o_p(n^{1/2})(nS^2_{n_1,n_2,n_3}+o_p(1)) = o_p(n^{1/2}). \end{aligned}$$

\(\square \)

Proof of Theorem 1

The proof follows the same lines of Pan et al. (2013). Recall \(U_n={1}/{n}\displaystyle \sum _{l=1}^n\hat{V}_l\) and \(\theta _0={1}/{n}\displaystyle \sum _{l=1}^n E \hat{V}_l\). Then

$$\begin{aligned} |U_n-\theta _0| \ge |\gamma |\dfrac{1}{1+|\gamma |\max |\hat{V}_l-E \hat{V}_l|}\dfrac{1}{n}\displaystyle \sum _{l=1}^n(\hat{V}_l-E \hat{V}_l)^2 \ge |\gamma |\dfrac{S_n}{1+|\gamma |Q_n} . \end{aligned}$$

We have that \(|\gamma |=O_p(n^{-1/2})\). Using Taylor’s expansion, one has that

$$\begin{aligned} \begin{aligned} -2\log R(\theta _0) =&\,2\displaystyle \sum _{l=1}^n\left\{ \gamma (\hat{V}_l-E \hat{V}_l)-\dfrac{1}{2}\left[ \gamma (\hat{V}_l-E \hat{V}_l)\right] ^2\right\} +o_p(1) .\end{aligned}\end{aligned}$$
(6)

Let \(F_0= {1}/{n}\displaystyle \sum _{l=1}^n\dfrac{\gamma ^2(\hat{V}_l-E \hat{V}_l)^3}{1+\gamma (\hat{V}_l-E \hat{V}_l)}\). By Eq. (2), we have that

$$\begin{aligned} \begin{aligned} 2n\gamma (U_n-\theta _0)-nS_n\gamma ^2 = n\dfrac{(U_n-\theta _0)^2}{S_n} - \dfrac{n F_0^2}{S_n} .\end{aligned} \end{aligned}$$

One can obtain \(F_0 =o_p(n^{-1/2})\). Thus Eq. (6) can be re-expressed as follows,

$$\begin{aligned} -2\log R(\theta _0)= n\dfrac{(U_n-\theta _0)^2}{S_n}+o_p(1). \end{aligned}$$

Combining Lemmas 1, 2 and 3, we finish the proof. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Zhao, Y. Jackknife empirical likelihood for the difference of two volumes under ROC surfaces. Ann Inst Stat Math 70, 789–806 (2018). https://doi.org/10.1007/s10463-017-0631-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-017-0631-z

Keywords

Navigation