Skip to main content
Log in

Additional aspects of the generalized linear-fractional branching process

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We derive some additional results on the Bienyamé–Galton–Watson-branching process with \(\theta \)-linear fractional branching mechanism, as studied by Sagitov and Lindo (Branching Processes and Their Applications. Lecture Notes in Statistics—Proceedings, 2016). This includes the explicit expression of the limit laws in both the subcritical cases and the supercritical cases with finite mean, and the long-run behavior of the population size in the critical case, limits laws in the supercritical cases with infinite mean when the \(\theta \) process is either regular or explosive, and results regarding the time to absorption, an expression of the probability law of the \(\theta \)-branching mechanism involving Bell polynomials, and the explicit computation of the stochastic transition matrix of the \(\theta \) process, together with its powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this work, a pgf will, therefore, be a function \(\phi \) which is absolutely monotone on (0, 1) with all non-negative derivatives of any order there, obeying \(\phi (1) \le 1.\)

  2. It is assumed here that \(i>1\). If \(i=1\), the condition on \(\rho -\phi ^{\circ n} (0)\) is no longer valid, but the one on \(\epsilon \) still is.

References

  • Athreya, K. B., Ney, P. (1972). Branching Processes. New York: Springer.

  • Biggins, J. D., Shanbhag, D. N. (1981). Some divisibility problems in branching processes. Mathematical Proceedings of the Cambridge Philosophical Society, 90(2), 321–330.

  • Charalambides, Ch. A., Singh, J. (1988). A review of the Stirling numbers, their generalizations and statistical applications. Communications in Statistics: Theory and Methods, 17(8). (1988)

  • Comtet, L. (1970). Analyse combinatoire. Tomes 1 et 2. Presses Universitaires de France, Paris.

  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications, vol. 2. New York: Wiley.

    MATH  Google Scholar 

  • Greenwood, M. (1931). On the statistical measure of infectiousness. Journal of Hygiene, Cambridge, 31, 336–351.

    Article  Google Scholar 

  • Harris, T. E. (1963). The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer, Berlin; Prentice-Hall, Englewood Cliffs.

  • Hénard, O. (2015). The fixation line in the Lambda-coalescent. Annals of Applied Probability, 25(5), 3007–3032.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoppe, F. M. (1980). On a Schröder equation arising in branching processes. Aequationes Mathematicae, 20(1), 33–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Huillet, T. (2016). On Mittag–Leffler distributions and related stochastic processes. Journal of Computational and Applied Mathematics, 296, 181–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Klebaner, F. C., Rösler, U., Sagitov, S. (2007). Transformations of Galton–Watson processes and linear fractional reproduction. Advances in Applied Probability, 39(4), 1036–1053.

  • Lambert, A. (2010). Some aspects of discrete branching processes. http://www.cmi.univ-mrs.fr/pardoux/Ecole_CIMPA/CoursALambert.

  • Möhle, M. (2017). On hitting probabilities for the Greenwood model. Bernoulli 23 (to appear).

  • Norris, J. R. (1998). Markov Chains. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rogers, L. C. G., Williams, D. (1994). Diffusions, Markov Processes and Martingales, vol. 1, Foundations, 2nd edn. Wiley, Chichester.

  • Sagitov, S., Lindo, A. (2016). A special family of Galton-Watson processes with explosions. In: del Puerto, I.M., et al. (eds.) Branching Processes and Their Applications. Lecture Notes in Statistics—Proceedings. Springer, Berlin (to appear). arXiv:1502.07538

  • Schröder, E. (1871). Über iterierte funktionen. Mathematische Annalen, 3, 296–322.

    Article  Google Scholar 

  • Steutel, F. W., van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability, 7, 893–899.

  • Woess, W. (2009). Denumerable Markov chains. Generating functions, boundary theory, random walks on trees. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich.

  • Yaglom, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Doklady Akademii Nauk SSSR, 56, 795–798.

    Google Scholar 

Download references

Acknowledgments

T. Huillet acknowledges partial support from the “Chaire Modélisation mathématique et biodiversité”. N. Grosjean and T. Huillet also acknowledge support from the labex MME-DII Center of Excellence (Modèles mathématiques et économiques de la dynamique, de l’incertitude et des interactions, ANR-11-LABX-0023-01 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Huillet.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosjean, N., Huillet, T. Additional aspects of the generalized linear-fractional branching process. Ann Inst Stat Math 69, 1075–1097 (2017). https://doi.org/10.1007/s10463-016-0573-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-016-0573-x

Keywords

Navigation