Skip to main content

Advertisement

Log in

New non-parametric inferences for low-income proportions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Low-income proportion is an important index in describing the inequality of an income distribution. It has been widely used by governments in measuring social stability around the world. Established inferential methods for this index are based on the empirical estimator of the index. It may have poor finite sample performances when the real income data are skewed or has outliers. In this paper, based on a smooth estimator for the low-income proportion, we propose a smoothed jackknife empirical likelihood approach for inferences of the low-income proportion. Wilks theorem is obtained for the proposed jackknife empirical likelihood ratio statistic. Various confidence intervals based on the smooth estimator are constructed. Extensive simulation studies are conducted to compare the finite sample performances of the proposed intervals with some existing intervals. Finally, the proposed methods are illustrated by a public income dataset of the professors in University System of Georgia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahadur, R. (1966). A note on quantiles in large samples. Annals of Mathematical Statistics, 37, 577–580.

    Article  MathSciNet  MATH  Google Scholar 

  • Bezzina, E. (2012). In 2010, 17% of Employees in the EU were Low-Wage Earners. Eurostat Statistics in Focus. Issue number 48. http://ec.europa.eu/eurostat/web/products-statistics-in-focus/-/KS-SF-12-048.

  • Bowman, A. W., Hall, P., Prvan, T. (1998). Cross-validation for the smoothing of distribution functions. Biometrika, 85, 799–808.

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Eurostat. (2000). Low-wage employees in EU countries. In Statistics in focus: Population and social conditions. Luxembourg: Office for Official Publications of EC.

  • Falk, M. (1983). Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. Statistica Neerlandica, 37, 73–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Falk, M. (1985). Asymptotic normality of the kernel quantile estimator. The Annals of Statistics, 13, 428–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Gong, Y., Peng, L., Qi, Y. C. (2010). Smoothed jackknife empirical likelihood method for ROC curve. Journal of Multivariate Analysis, 101, 1520–1531.

  • Hall, P., La Scala, B. (1990). Methodology and algorithms of empirical likelihood. International Statistical Review, 58, 109–127.

  • Jing, B., Yuan, J., Zhou, W. (2009). Jackknife empirical likelihood. Journal of American Statistical Association, 104, 1224–1232.

  • Li, Z., Gong, Y., Peng, L. (2011). Empirical likelihood intervals for conditional value-at-risk in heteroscedastic regression models. Scandinavian Journal of Statistics, 38, 781–787.

  • Owen, A. (1988). Empirical likelihood ratio confidence intervals for single functional. Biometrika, 75, 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18, 90–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Preston, I. (1995). Sampling distributions of relative poverty statistics. Applied Statistics, 44, 91–99 [Correction, 45, 399 (1996)

  • Quenouille, M. (1956). Note on bias in estimation. Biometrika, 43, 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, J. N. K., Wu, C. (2010). Pseudo-empirical likelihood inference for multiple frame surveys. Journal of American Statistical Association, 105, 1494–1503.

  • Rongve, I. (1997). Statistical inference for poverty indices with fixed poverty lines. Applied Economics, 29, 387–392.

  • Shao, J. (2003). Mathematical statistics. New York: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • Shao, J., Tu, D. (1995). The jackknife and bootstrap. New York: Springer.

  • Turkey, J. W. (1958). Bias and confidence in not quite large samples (Abstract). The Annals of Mathematical Statistics, 29, 614.

    Article  Google Scholar 

  • Wei, Z., Zhu, L. (2010). Evaluation of value at risk: An empirical likelihood approach. Statistica Sinica, 20, 455–468.

  • Wei, Z., Wen, S., Zhu, L. (2009). Empirical likelihood-based evaluations of value at risk models. Science in China Series A: Mathematics, 52, 1995–2006.

  • Yang, B. Y., Qin, G. S., Qin, J. (2011). Empirical likelihood-based inferences for a low income proportion. The Canadian Journal of Statistics, 39, 1–16.

  • Yves, G. B., Chris, J. S. (2003). Variance estimation for a low income proportion. Applied Statistics, 52, 457–468.

  • Zheng, B. (2001). Statistical inference for poverty measures with relative poverty lines. Journal of Econometrics, 101, 337–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, X. H., Qin, G. S., Lin, H. Z., Li, G. (2006). Inferences in censored cost regression models with empirical likelihood. Statistica Sinica, 16, 1213–1232.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengsheng Qin.

Appendix: Proof of theorems

Appendix: Proof of theorems

The Proof of Theorem 2.1

We have the following decomposition

$$\begin{aligned} \sqrt{n} \{{{\hat{T}}}_n(\alpha , \beta ) - \theta _{\alpha \beta } \}= & {} \sqrt{n} \left[ \frac{1}{n} \sum _{i=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - \frac{1}{n} \sum _{i=1}^n K\left( \frac{\alpha \xi _{\beta } - X_i}{h}\right) \right] \nonumber \\&+\sqrt{n} \left[ \frac{1}{n} \sum _{i=1}^n K\left( \frac{\alpha \xi _{\beta } - X_i}{h}\right) - F(\alpha \xi _\beta )\right] \equiv I_1 + I_2. \end{aligned}$$
(5)

\(I_1\) from (5) can be written as

$$\begin{aligned} I_1= & {} \int _{-\infty }^{\infty } \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) - K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) \right] \mathrm{d} \left[ \sqrt{n}(F_n(x)-F(x))\right] \nonumber \\&+ \sqrt{n}\int _{-\infty }^{\infty } \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) - K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) \right] \mathrm{d}F(x) \equiv I_{11} + I_{12}. \end{aligned}$$
(6)

Then using Taylor expansion and the Bahadur’s representation for sample quantile (Bahadur 1966)

$$\begin{aligned} {{\hat{\xi }}}_{\beta } - \xi _{\beta } = \frac{\beta - \frac{1}{n} \sum _{i=1}^n I(X_i \le \xi _{\beta })}{f(\xi _{\beta })} + o_p(n^{-\frac{1}{2}}), \end{aligned}$$

\(I_{12}\) from (6) can be written as

$$\begin{aligned} I_{12}= & {} \sqrt{n}\int _{-\infty }^{\infty } \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) - K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) \right] \mathrm{d}F(x)\nonumber \\= & {} \sqrt{n}\int _{-\infty }^{\infty } \omega \left( \frac{\alpha \xi _{\beta } - x}{h}\right) \frac{\alpha {{\hat{\xi }}}_{\beta } - \alpha \xi _{\beta }}{h}\, \mathrm{d}F(x) + o_p(1) \nonumber \\= & {} - \sqrt{n}\int _{-\infty }^{\infty } \omega \left( \frac{\alpha \xi _{\beta } - x}{h}\right) \frac{\alpha }{h} \frac{\frac{1}{n} \sum _{i=1}^n I(X_i \le \xi _{\beta }) - \beta }{f(\xi _{\beta })}\,\mathrm{d}F(x) + o_p(1) \nonumber \\= & {} -\frac{\alpha f(\alpha \xi _\beta )U_n(\beta )}{f(\xi _{\beta })} + o_p(1), \end{aligned}$$
(7)

where \( U_n(\beta ) = \sqrt{n}[\frac{1}{n} \sum _{i=1}^nI(X_i \le \xi _{\beta }) - \beta ] = \sqrt{n}[\frac{1}{n} \sum _{i=1}^nI(F(X_i) \le {\beta }) - \beta ]. \)

Since \(\sqrt{n}[F_n(x)-F(x)]\rightarrow B(x)\), which is a Gaussian process, \(\sqrt{n} ({{\hat{\xi }}}_{\beta } - \xi _{\beta })=O_p(1)\), and \(\sqrt{n} h \rightarrow \infty \), we get \(I_{11} = o_p(1)\). Therefore, \(I_1=-\frac{\alpha f(\alpha \xi _\beta )U_n(\beta )}{f(\xi _{\beta })} + o_p(1)\).

Next, let us consider \(I_2\) from (5). We are going to prove

$$\begin{aligned} EK \left( \frac{\alpha \xi _\beta - X}{h}\right) \mathop {\longrightarrow }\limits ^{{}} \theta _{\alpha \beta },\quad \text{ and }\quad EK^2 \left( \frac{\alpha \xi _\beta - X}{h}\right) \mathop {\longrightarrow }\limits ^{{}} \theta _{\alpha \beta },\qquad \hbox {as } h\rightarrow 0. \end{aligned}$$

Notice that

$$\begin{aligned}&\lim _{h \rightarrow 0} EK \left( \frac{\alpha \xi _\beta - X}{h}\right) = \lim _{h \rightarrow 0}\int _{-\infty }^{\infty } K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) f(x)\,\mathrm{d}x \nonumber \\&\quad = \lim _{h \rightarrow 0}\int _{-\infty }^{\infty } \int _{-\infty }^{\frac{\alpha \xi _{\beta } - x}{h}} \omega (y)\,\mathrm{d}y f(x)\,\mathrm{d}x = \int _{-\infty }^{\infty } \left[ \lim _{h \rightarrow 0} \int _{-\infty }^{\frac{\alpha \xi _{\beta } - x}{h}} \omega (y)\,\mathrm{d}y\right] f(x)\,\mathrm{d}x \nonumber \\&\quad = \int _{-\infty }^{\infty }\{0*I[\alpha \xi _{\beta } < x] \!+\! \int _{-\infty }^{0}\omega (y)\,\mathrm{d}y* I[\alpha \xi _{\beta } \!=\! x] +1*I[\alpha \xi _{\beta } > x] \}f(x)\,\mathrm{d}x\nonumber \\&\quad = \int _{-\infty }^{\infty } I[\alpha \xi _{\beta } > x ] f(x)\,\mathrm{d}x = \int _{-\infty }^{\infty } I[F(x)<F(\alpha \xi _\beta )]\,\mathrm{d}F(x) \nonumber \\&\quad = F(\alpha \xi _\beta ) = \theta _{\alpha \beta }. \end{aligned}$$
(8)

Similarly, we have

$$\begin{aligned}&\lim _{h \rightarrow 0} EK^2 \left( \frac{\alpha \xi _\beta - X}{h}\right) =\lim _{h \rightarrow 0}\int _{-\infty }^{\infty } K^2\left( \frac{\alpha \xi _{\beta } - x}{h}\right) f(x) \,\mathrm{d}x \nonumber \\&\quad = \int _{-\infty }^{\infty }\{0*I[\alpha \xi _{\beta } < x] \!+\! \int _{-\infty }^{0}\omega (y)\mathrm{d}y*I[\alpha \xi _{\beta } \!=\! x] \!+\!1*I[\alpha \xi _{\beta } > x] \}^2 f(x)\,\mathrm{d}x\nonumber \\&\quad = F(\alpha \xi _\beta ) = \theta _{\alpha \beta }. \end{aligned}$$
(9)

Let \(W_i = K(\frac{\alpha \xi _{\beta } - X_i}{h})\). So \(I_2\) from (5) can be rewritten as

$$\begin{aligned} I_2= & {} \sqrt{n} \left[ \frac{1}{n} \sum _{i=1}^n K\left( \frac{\alpha \xi _{\beta } - X_i}{h}\right) - EK\left( \frac{\alpha \xi _{\beta } - X}{h}\right) \right] + o_p(1) \nonumber \\= & {} \frac{1}{\sqrt{n}} \sum _{i=1}^n (W_i - EW_i) + o_p(1). \end{aligned}$$
(10)

Let \(\{U_1, U_2,\ldots , U_n\}\) be an i.i.d. sample from U(0, 1) (uniform distribution on [0, 1]) and independent of \(\{X_1, X_2,\ldots , X_n\}\). Since \(U_i \mathop {=}\limits ^{{d}} F(X_i) \mathop {\sim }\limits ^{\mathrm{i.i.d.}} U(0,1)\) for any continuous distribution function F, then

(11)

where \(\mathop {=}\limits ^{{d}}\) means that two statistics asymptotically have the same distribution. Therefore,

$$\begin{aligned} I_1 + I_2&\mathop {=}\limits ^{{d}}&\frac{1}{\sqrt{n}} \sum _{i=1}^n \left[ - \frac{\alpha f(\alpha \xi _\beta )}{f(\xi _{\beta })}\left( I(U_i \le {\beta }) - \beta \right) + (W_i - EW_i)\right] + o_p(1).\nonumber \\ \end{aligned}$$
(12)

Since

$$\begin{aligned}&\lim _{h \rightarrow 0} E[(I(U_i \le {\beta }) - \beta )(W_i - EW_i)] \\&\quad = \int _{-\infty }^{\infty }[I(F(x) \le {\beta }) - \beta ] \left[ \lim _{h \rightarrow 0} K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) - \lim _{h \rightarrow 0} EW_i \right] f(x)\,\mathrm{d}x \\&\quad = \int _{-\infty }^{\infty }[I(F(x) \le {\beta }) - \beta ][I[\alpha \xi _{\beta } > x ] - \theta _{\alpha \beta }]f(x)\,\mathrm{d}x \\&\quad = \theta _{\alpha \beta } (1-\beta ), \end{aligned}$$

\(\hbox {Var}[I(U_i \le {\beta }) - \beta ]= \beta (1-\beta ) \), \(\hbox {Var}(W_i) = EK^2 (\frac{\alpha \xi _{\beta } - x}{h}) - [EK(\frac{\alpha \xi _{\beta } - x}{h})]^2 = \theta _{\alpha \beta }(1- \theta _{\alpha \beta }) +o(1)\), by the central limit theorem applicable to a triangular array setting (see Shao 2003), we get that

$$\begin{aligned} I_1 + I_2 \mathop {\longrightarrow }\limits ^{{d}} N(0, \sigma ^2_{\alpha \beta }), \end{aligned}$$
(13)

where \(\sigma ^2_{\alpha \beta } = \frac{\alpha ^2 \beta (1-\beta ) f^2(\alpha \xi _ \beta )}{f^2(\xi _{\beta })} - 2\alpha (1-\beta )\theta _{\alpha \beta } \frac{f(\alpha \xi _{\beta })}{f(\xi _{\beta })} + \theta _{\alpha \beta } (1-\theta _{\alpha \beta })\). The proof of Theorem 2.1 is complete.

We need Lemmas 1 and 2 to prove Theorem 3.1.

Lemma 1

Under the conditions in Theorem 2.1, we have

$$\begin{aligned} \sqrt{n} \left\{ \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}(\alpha , \beta ) - \theta _{\alpha \beta }\right\} \mathop {\longrightarrow }\limits ^{{d}}N(0, \sigma ^2_{\alpha \beta }), \end{aligned}$$
(14)

where \(\sigma ^2_{\alpha \beta }\) is defined in Theorem 2.1.

Proof

Note that \( \frac{1}{n}\sum _{k=1}^n {{\hat{V}}}_{k}(\alpha , \beta )\) can be decomposed into

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^n {{\hat{V}}}_{k}(\alpha , \beta )=\frac{n-1}{n}\sum _{k=1}^n[{{\hat{T}}}_n (\alpha , \beta ) - {{\hat{T}}_{n-1,k}}(\alpha , \beta )] + {{\hat{T}}}_n (\alpha , \beta ), \end{aligned}$$
(15)

while

$$\begin{aligned}&{{\hat{T}}}_n (\alpha , \beta ) - {{\hat{T}}_{n-1,k}} (\alpha , \beta ) \nonumber \\&\quad = \frac{1}{n}\sum _{i=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - \frac{1}{n-1 } \sum _{j \ne k}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) \nonumber \\&\quad = \frac{1}{n}\sum _{i=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - \frac{1}{n} \sum _{j \ne k}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) \nonumber \\&\qquad + \frac{1}{n} \sum _{j \ne k}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) - \frac{1}{n-1 } \sum _{j \ne k}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) . \end{aligned}$$
(16)

So

$$\begin{aligned}&\sum _{k=1}^n({{\hat{T}}}_n (\alpha , \beta ) - {{\hat{T}}_{n-1,k}}(\alpha , \beta ) ) \nonumber \\&\quad = \left\{ \frac{1}{n} \sum _{k=1}^n \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_i}{h}\right) \right] \right\} \nonumber \\&\qquad + \left\{ \frac{1}{n} \sum _{k=1}^n \sum _{j=1}^n \ \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) \right] \!-\! \frac{1}{n-1}\sum _{k=1}^n \sum _{j=1}^n \ \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_j}{h}\right) \right] \right. \nonumber \\&\qquad + \left. \frac{1}{n-1} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_k}{h}\right) \right\} \equiv I_1 + I_2. \end{aligned}$$
(17)

Using the Bahadur representation for sample quantile (Bahadur 1966), we get that

$$\begin{aligned} {{\hat{\xi }}}_{\beta ,-k} - {{\hat{\xi }}}_{\beta }= & {} ({{\hat{\xi }}}_{\beta ,-k} - \xi _{\beta } ) - ( {{\hat{\xi }}}_{\beta } - \xi _{\beta }) \nonumber \\= & {} \left[ \frac{\beta - \frac{1}{n-1} \sum _{j \ne k}^n I (X_j \le \xi _{\beta })}{f(\xi _{\beta })} \right] - \left[ \frac{\beta - \frac{1}{n} \sum _{i =1}^n I (X_i \le \xi _{\beta })}{f(\xi _{\beta })} \right] \nonumber \\&+o_p(n^{-1/2}) \nonumber \\= & {} \frac{ \frac{1}{n-1} [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )]}{f(\xi _{\beta })} + o_p(n^{-1/2}), \end{aligned}$$
(18)

and \((\frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h})^2 =O_p(\frac{1}{n^2h^2})\). Under conditions of Theorem 2.1, using Taylor expansion, we get that

$$\begin{aligned} I_1= & {} \frac{1}{n} \sum _{k=1}^n \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k}-X_i}{h}\right) \right] \nonumber \\= & {} \frac{1}{n}\sum _{k=1}^n \sum _{i=1}^n \left[ -\omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h}\right. \nonumber \\&\left. -\frac{1}{2}\omega ^{'} \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) \left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h} \right) ^2\right] +o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} \frac{1}{n} \sum _{i=1}^n \left\{ -\omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) \sum _{k=1}^n \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h}\right. \nonumber \\&\left. -\frac{1}{2}\sum _{k=1}^n\omega ^{'} \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) \left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h}\right) ^2\right\} +o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} - \frac{1}{2} \frac{1}{n} \sum _{i=1}^n \sum _{k=1}^n\omega ^{'} \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) \left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h}\right) ^2 + o_p(n^{-1/2}) +o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} O_p\left( \frac{1}{nh^2}\right) \int _{-\infty }^{\infty } \omega ^{'} \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) \mathrm{d}F_n(x) + o_p(n^{-1/2})+o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} O_p\left( \frac{1}{nh^2}\right) \int _{-\infty }^{\infty } \omega ^{'} \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) \mathrm{d}F(x) + o_p(n^{-1/2})+o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} O_p\left( \frac{1}{nh}\right) \int _{-\infty }^{\infty } \omega ^{'} (y) f(\alpha {{\hat{\xi }}}_{\beta }-yh) \mathrm{d}y + o_p(n^{-1/2})+o_p\left( \frac{1}{nh}\right) \nonumber \\= & {} O_p\left( \frac{1}{nh}\right) + o_p(n^{-1/2}). \end{aligned}$$
(19)

Meanwhile, \(I_2\) from (17) can be written to

$$\begin{aligned} I_2= & {} \sum _{k=1}^n \left[ \left( \frac{1}{n}-\frac{1}{n-1}\right) \sum _{j=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_j}{h}\right) + \frac{1}{n-1}K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \right] \nonumber \\= & {} \frac{-1}{n(n-1)} \sum _{k=1}^n \sum _{j=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_j}{h} \right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_j}{h}\right) \right] \nonumber \\&+ \frac{-1}{n(n-1)} \sum _{k=1}^n \sum _{j=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_j}{h}\right) \nonumber \\&- \frac{-1}{n-1} \sum _{k=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \right] \nonumber \\&- \frac{-1}{n-1} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \nonumber \\= & {} O_p\left( \frac{1}{n(n-1)h}\right) - \frac{1}{n(n-1)} \sum _{k=1}^n \sum _{j=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_j}{h}\right) \nonumber \\&- O_p\left( \frac{1}{(n-1)^2h}\right) + \frac{1}{n-1} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \nonumber \\= & {} O_p\left( \frac{1}{n^2h}\right) . \end{aligned}$$
(20)

From (19) and (20), we get \(I_1 + I_2 = O_p(\frac{1}{nh})+ o_p(n^{-1/2})\), which implies that

$$\begin{aligned} \frac{1}{n}\sum _{k=1}^n {{\hat{V}}}_k (\alpha , \beta )= & {} \frac{n-1}{n}\sum _{k=1}^n [{{\hat{T}}}_n (\alpha , \beta ) - {{\hat{T}}_{n-1,k}} (\alpha , \beta )] + {{\hat{T}}}_n (\alpha , \beta ) \nonumber \\= & {} {{\hat{T}}}_n (\alpha , \beta ) + O_p\left( \frac{1}{nh}\right) + o_p(n^{-1/2}). \end{aligned}$$
(21)

Therefore,

$$\begin{aligned} \sqrt{n} \left\{ \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_k (\alpha , \beta ) - \theta _{\alpha \beta } \right\}= & {} \sqrt{n} [{{\hat{T}}}_n (\alpha , \beta ) - \theta _{\alpha \beta }]\\&+ O_p\left( \frac{1}{\sqrt{n}h}\right) + o_p(1) \mathop {\longrightarrow }\limits ^{{d}} N(0, \sigma ^2_{\alpha \beta }). \end{aligned}$$

Lemma 2

Under the conditions in Theorem 2.1, we have that

$$\begin{aligned} \frac{1}{n} \sum _{k=1}^n \{ {{\hat{V}}}_{k}(\alpha , \beta ) - \theta _{\alpha \beta }\} ^2 \mathop {\longrightarrow }\limits ^{{p}} \sigma ^2_{\alpha \beta }. \end{aligned}$$
(22)

Proof

From Lemma 1, it follows that

$$\begin{aligned}&\frac{1}{n} \sum _{k=1}^n \{ {{\hat{V}}}_{k}(\alpha , \beta ) - \theta _{\alpha \beta }\} ^2 = \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}^2(\alpha , \beta )-2\theta _{\alpha \beta } \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}(\alpha , \beta ) + \frac{1}{n} \sum _{k=1}^n \theta ^2_{\alpha \beta } \nonumber \\&\quad \mathop {\longrightarrow }\limits ^{{p}} \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}^2(\alpha , \beta )-2\theta _{\alpha \beta } \theta _{\alpha \beta } + \frac{1}{n} n \theta ^2_{\alpha \beta } = \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}^2(\alpha , \beta ) - \theta ^2_{\alpha \beta }. \end{aligned}$$
(23)

By the definition of the jackknife pseudo-values for the low-income proportion, we have that

$$\begin{aligned} {{\hat{V}}}_{k}(\alpha , \beta )= & {} n {{\hat{T}}}_n(\alpha , \beta ) - (n-1) {{\hat{T}}}_{n-1,k} (\alpha , \beta ), \nonumber \\= & {} \sum _{i=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - \sum _{j \ne k}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_j}{h}\right) \nonumber \\= & {} \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_i}{h}\right) \right] + K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) ,\nonumber \\ \end{aligned}$$
(24)

and

$$\begin{aligned} {{\hat{V}}}_{k}^2(\alpha , \beta ) \!= & {} \! \left\{ \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } \!-\! X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} \!-\! X_i}{h}\right) \right] \right\} ^2 \!+\! K^2\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \nonumber \\&+ 2K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_i}{h}\right) \right] .\nonumber \\ \end{aligned}$$
(25)

Therefore,

$$\begin{aligned} \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}^2(\alpha , \beta )= & {} \frac{1}{n} \sum _{k=1}^n \left\{ \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_i}{h}\right) \right] \right\} ^2 \nonumber \\&+ \frac{1}{n} \sum _{k=1}^n K^2\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \nonumber \\&+ \frac{2}{n} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \nonumber \\&\times \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_i}{h}\right) \right] \nonumber \\\equiv & {} J_1 + J_2 + J_3. \end{aligned}$$
(26)

Using Taylor expansion and the Bahadur representation for sample quantile, the first term \(J_1\) in (26) can be written as

(27)

\(J_2\) from (26) can be written as

$$\begin{aligned} J_2= & {} \frac{1}{n} \sum _{k=1}^n K^2\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \nonumber \\= & {} \frac{1}{n} \sum _{k=1}^n \left[ K^2\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) - K^2\left( \frac{\alpha \xi _{\beta } - X_k}{h}\right) \right] + \frac{1}{n} \sum _{k=1}^n K^2\left( \frac{\alpha \xi _{\beta } - X_k}{h}\right) \nonumber \\= & {} \frac{1}{n} \sum _{k=1}^n K^2\left( \frac{\alpha \xi _{\beta } - X_k}{h}\right) + o_p(1) \nonumber \\= & {} EK^2\left( \frac{\alpha \xi _{\beta } - x}{h}\right) + o_p(1) = \theta _{\alpha \beta } + o_p(1). \end{aligned}$$
(28)

The term \(J_3\) from (26) can be written as

$$\begin{aligned} J_3= & {} \frac{2}{n} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \sum _{i=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_i}{h}\right) \right] \nonumber \\= & {} \frac{-2}{n} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta }}{h}\right) \sum _{i=1}^n \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_i}{h}\right) + o_p(1) \nonumber \\ \!= & {} \! \frac{-2\alpha }{nh} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} \!-\! X_k}{h}\right) ({{\hat{\xi }}}_{\beta ,-k} \!-\! {{\hat{\xi }}}_{\beta }) n \int _{-\infty }^{\infty } \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } \!-\! x}{h}\right) \mathrm{d}F(x) \!+\! o_p(1) \nonumber \\= & {} -2\alpha \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) ({{\hat{\xi }}}_{\beta ,-k} - {{\hat{\xi }}}_{\beta }) \int _{-\infty }^{\infty } \omega (z) f(\alpha \xi _{\beta } - zh)\,\mathrm{d}z + o_p(1) \nonumber \\= & {} -2\alpha \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) \frac{[ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )]}{(n-1) f(\xi _{\beta }) } f(\alpha \xi _\beta ) + o_p(1) \nonumber \\= & {} \frac{-2\alpha f(\alpha \xi _\beta ) }{f(\xi _{\beta })} \frac{1}{n-1} \sum _{k=1}^n \left[ K\left( \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - X_k}{h}\right) - K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \right. \nonumber \\&\left. + K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \right] [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )] + o_p(1) \nonumber \\= & {} \frac{-2\alpha f(\alpha \xi _\beta ) }{f(\xi _{\beta })} \left\{ \frac{1}{n-1} \sum _{k=1}^n \left[ - \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta } }{h} \right] \right. \nonumber \\&\times \left. [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )] \right. \nonumber \\&\left. + \frac{1}{n-1} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )] \right\} + o_p(1) \nonumber \\\equiv & {} \frac{-2\alpha f(\alpha \xi _\beta ) }{f(\xi _{\beta })} \{ M_1 + M_2\}+ o_p(1), \end{aligned}$$
(29)

and

$$\begin{aligned} M_1= & {} \frac{1}{n-1} \sum _{k=1}^n \left[ - \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \frac{\alpha {{\hat{\xi }}}_{\beta ,-k} - \alpha {{\hat{\xi }}}_{\beta } }{h} \right] [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )] \nonumber \\= & {} \frac{-\alpha }{(n-1)h} \sum _{k=1}^n \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) \frac{[ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )]^2}{(n-1) f(\xi _{\beta }) } + o_p(1) \nonumber \\= & {} \frac{-\alpha }{(n-1)^2 h f(\xi _{\beta }) } \sum _{k=1}^n \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )]^2 + o_p(1) \nonumber \\= & {} \frac{- n\alpha }{(n-1)^2 h f(\xi _{\beta }) } \int _{-\infty }^{\infty } \omega \left( \frac{\alpha {{\hat{\xi }}}_{\beta } - x}{h}\right) [I(F(x)\le \beta )-\beta ]^2\,\mathrm{d}F(x) + o_p(1) \nonumber \\= & {} o_p(1),\end{aligned}$$
(30)
$$\begin{aligned} M_2= & {} \frac{1}{n-1} \sum _{k=1}^n K\left( \frac{\alpha {{\hat{\xi }}}_{\beta } - X_k}{h}\right) [ I (X_k \le \xi _{\beta }) - F_n(\xi _\beta )] \nonumber \\= & {} \frac{n}{n-1} \int _{-\infty }^{\infty } K\left( \frac{\alpha \xi _{\beta } - x}{h}\right) [I(F(x)\le \beta )-\beta ]\, \mathrm{d}F(x)+ o_p(1) \nonumber \\= & {} \frac{n}{n-1} \int _{-\infty }^{\infty } \int _{-\infty }^{\frac{\alpha \xi _{\beta } - x}{h}} \omega (y)\,\mathrm{d}y [I(F(x)\le \beta )-\beta ] \mathrm{d}F(x) + o_p(1) \nonumber \\= & {} \int _{-\infty }^{\infty } I(F(x) \le F(\alpha \xi _\beta ))[I(F(x)\le \beta )-\beta ]\, \mathrm{d}F(x) + o_p(1) \nonumber \\= & {} \theta _{\alpha \beta }(1-\beta )+ o_p(1). \end{aligned}$$
(31)

From (29), (30), and (31), we get \(J_3=- 2\alpha (1-\beta )\theta _{\alpha \beta } \frac{f(\alpha \xi _{\beta })}{f(\xi _{\beta })} + o_p(1)\). Therefore,

$$\begin{aligned} \frac{1}{n} \sum _{k=1}^n {{\hat{V}}}_{k}^2(\alpha , \beta ) \mathop {\longrightarrow }\limits ^{{p}} \frac{ \alpha ^2 \beta (1-\beta ) f^2(\alpha \xi _\beta )}{f^2(\xi _{\beta })} + \theta _{\alpha \beta } - 2\alpha (1-\beta )\theta _{\alpha \beta } \frac{f(\alpha \xi _{\beta })}{f(\xi _{\beta })}.\qquad \end{aligned}$$
(32)

In sum, we have that

$$\begin{aligned} \frac{1}{n} \sum _{k=1}^n \{ {{\hat{V}}}_{k}(\alpha , \beta ) - \theta _{\alpha \beta }\} ^2 \mathop {\longrightarrow }\limits ^{{p}} \sigma ^2_{\alpha \beta }. \end{aligned}$$

The Proof of Theorem 3.1

It follows immediately from Lemmas 1 and 2.

The Proof of Theorem 3.2

Let \(g(\lambda )=\frac{1}{n} \sum _{i=1}^n\frac{{\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }}{1+\lambda ({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })}\). It is easy to check that

$$\begin{aligned} 0= & {} |g(\lambda )|=\frac{1}{n}\left| \sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }) - \lambda \sum _{i=1}^n \frac{({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })^2}{1+\lambda ({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })}\right| \nonumber \\\ge & {} \left| \frac{\lambda }{n}\sum _{i=1}^n \frac{({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })^2}{1+\lambda ({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })}\right| - \left| \frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }\right| \nonumber \\\ge & {} \frac{|\lambda |S_n}{1+|\lambda |Z_n} - \left| \frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })\right| , \end{aligned}$$
(33)

where \(S_n=\frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })^2\) and \(Z_n=\max _{1 \le i \le n}|{\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }|\).

From Lemmas 1 and 2, we have \(|\lambda |=O_p(n^{-\frac{1}{2}})\). Put \(\gamma _i=\lambda ({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })\), then we have \(\max _{1 \le i \le n}|\gamma _i|=o_p(1)\), and

$$\begin{aligned} 0= & {} g(\lambda )=\frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })\left( 1- \gamma _i + \frac{\gamma _i^2}{1+\gamma _i}\right) \nonumber \\= & {} \frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })-S_n\lambda + \frac{\lambda ^2}{n}\sum _{i=1}^n\frac{({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })^3}{1+\gamma _i}\nonumber \\= & {} \frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })-S_n\lambda + o_p(n^{-1/2}), \end{aligned}$$
(34)

which implies that \(\lambda =S_n^{-1}\frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }) + \beta _n\), where \(\beta _n=o_p(n^{-1/2})\).

Therefore,

$$\begin{aligned} l_n(\theta _{\alpha \beta })= & {} 2\sum _{i=1}^n \log \{ 1+ \lambda ({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })\}\nonumber \\= & {} 2\sum _{i=1}^n\gamma _i -\sum _{i=1}^n\gamma _i^2 + o_p(1) \nonumber \\= & {} 2n\lambda \frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }) - nS_n\lambda ^2 + o_p(1)\nonumber \\= & {} \frac{n\{\frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta }) \}^2}{S_n} - nS_n\beta _n^2 + o_p(1)\nonumber \\= & {} \frac{n\{\frac{1}{n}\sum _{i=1}^n({\hat{V}}_i(\alpha , \beta )-\theta _{\alpha \beta })\}^2}{S_n} + o_p(1) \mathop {\longrightarrow }\limits ^{{d}} \chi ^2(1). \end{aligned}$$
(35)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Qin, G. New non-parametric inferences for low-income proportions. Ann Inst Stat Math 69, 599–626 (2017). https://doi.org/10.1007/s10463-016-0554-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-016-0554-0

Keywords

Navigation