Skip to main content
Log in

Domain adaptation network based on hypergraph regularized denoising autoencoder

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Domain adaptation learning aims to solve the classification problems of unlabeled target domain by using rich labeled samples in source domain, but there are three main problems: negative transfer, under adaptation and under fitting. Aiming at these problems, a domain adaptation network based on hypergraph regularized denoising autoencoder (DAHDA) is proposed in this paper. To better fit the data distribution, the network is built with denoising autoencoder which can extract more robust feature representation. In the last feature and classification layers, the marginal and conditional distribution matching terms between domains are obtained via maximum mean discrepancy measurement to solve the under adaptation problem. To avoid negative transfer, the hypergraph regularization term is introduced to explore the high-order relationships among data. The classification performance of the model can be improved by preserving the statistical property and geometric structure simultaneously. Experimental results of 16 cross-domain transfer tasks verify that DAHDA outperforms other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bellaachia A, AI-Dhelaan M (2015) Short text keyphrase extraction with hypergraphs. Prog Artif Intell 3(2):73–87

    Article  Google Scholar 

  • Bickel S, Brückner M, Scheffer T (2009) Discriminative learning under covariate shift. J Mach Learn Res 10:2137–2155

    MathSciNet  MATH  Google Scholar 

  • Bruzzone L, Marconcini M (2010) Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32(5):770–787

    Article  Google Scholar 

  • Cao B, Pan SJ, Zhang Y, Yeung DY, Yang Q (2010) Adaptive transfer learning. In: AAAI, pp 407–412

  • Chen HY, Chien JT (2015) Deep semi-supervised learning for domain adaptation. In: MLSP, pp 1–6

  • Chen XJ, Zhan YZ, Ke J, Chen XB (2015) Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimedia Tools Appl 75(22):15079–15100

    Article  Google Scholar 

  • Chen M, Xu Z, Weinberger KQ, Sha F (2012) Marginalized denoising autoencoders for domain adaptation. In: ICML, pp 767–774

  • Chu WS, Torre FDL, Cohn JF (2013) Selective transfer machine for personalized facial action unit detection. In: CVPR, pp 3515–3522

  • Dai W, Yang Q, Xue GR, Yu Y (2007) Boosting for transfer learning. In: ICML, pp 193–200

  • Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp 988–996

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  • Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropatation. In: ICML

  • Gong BQ, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp 2066–2073

  • Gretton A, Borgwardt KM, Rasch M, Schölkopf B, CSmola AJ (2006) A kernel method for the two-sample-problem. In: NIPS, pp 513–520

  • Huang J, Smola AJ, Gretton A, Borgwardt KM, Schölkopf B (2006) Correcting sample selection bias by unlabeled data. In: NIPS, pp 601–608

  • Lee SI, Chatalbashev V, Vickrey D, Koller D (2007) Learning a meta-level prior for feature relevance from multiple related tasks. In: ICML, pp 489–496

  • Long MS, Cao Y, Wang JM, Jordan MI (2015) Learning transferable features with deep adaptation networks. In: ICML, pp 97–105

  • Long MS, Wang JM, Ding GG, Sun JJ, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: ICCV, pp 2200–2207

  • Long MS, Wang JM, Ding GG, Sun JJ, Yu PS (2014a) Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp 1410–1417

  • Long MS, Wang JM, Ding GG, Shen D, Yang Q (2014b) Transfer learning with graph co-regularization. IEEE Trans Knowl Data Eng 26(7):1805–1818

    Article  Google Scholar 

  • Lore KG, Akintayo A, Sarkar S (2016) LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit 61:650–662

    Article  Google Scholar 

  • Lv L, Zhao DB, Deng QQ (2016) A semi-supervised predictive sparse decomposition based on the task-driven dictionary learning. Cogn Comput. doi:10.1007/s12559-016-9438-0

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  • Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  • Peng Y, Wang SH, Long XZ, Lu BL (2015) Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149:340–353

    Article  Google Scholar 

  • Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. In: ICML, pp 759–766

  • Raina R, Ng AY, Koller D (2006) Constructing informative priors using transfer learning. In: ICML, pp 713–720

  • Schwaighofer A, Tresp V, Yu K (2004) Learning Gaussian process kernels via hierarchical Bayes. In: NIPS, pp 1209–1216

  • Sugiyama M, Nakajima S, Kashima H, Von BP, Kawanabe M (2008) Direct importance estimation with model selection and its application to covariate shift adaptation. In: NIPS, pp 1433–1440

  • Sun BC, Feng JS, Saenko K (2016a) Return of frustratingly easy domain adaptation. In: AAAI, pp 2058–2065

  • Sun BC, Saenko K (2016b) Deep CORAL: correlation alignment for deep domain adaptaion. In: ECCV, pp 443–450

  • Tsai YHH, Yeh YR, Wang YCF (2016) Learning cross-domain landmarks for heterogeneous domain adaptation. In: CVPR, pp 5081–5090

  • Van DML, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Mangozal PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  • Vincent P, Larochelle H, Bengio Y, Mangozal PA (2008) Extracting and composing robust features with denoising autoencoders. In: ICML, pp 1096–1103

  • Yang B, Chen SC (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314

    Article  Google Scholar 

  • Yu J, Tao D, Wang M (2012a) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J, Wang M, Tao D (2012b) Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648

    Article  MathSciNet  MATH  Google Scholar 

  • Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan H, Tang YY (2015) Learning with hypergraph for hyperspectral image feature extraction. IEEE Trans Geosci Remote Sens Lett 12(8):1695–1699

    Article  Google Scholar 

  • Zhan Y, Sun J, Niu D, Mao Q, Fan J (2015) A semi-supervised incremental learning method based on adaptive probabilistic hypergraph for video semantic detection. Multimedia Tools AppI 74(15):5513–5531

    Article  Google Scholar 

  • Zhang X, Yu XF, Wang SJ, Chang SF (2015) Deep transfer network: unsupervised domain adaptation. arXiv Preprint arXiv:1503.00591

  • Zhao DB, Zhang QC, Wang D, Zhu YH (2016) Experience replay for optimal control of nonzero-sum game systems with unknown dynamics. IEEE Trans Cybern 46(3):1–12

    Article  Google Scholar 

  • Zhou DY, Huang JY, Schölkopf B (2006) Learning with hypergraphs: clustering, classification, and embedding. In: NIPS, pp 1601–1608

  • Zhuang FZ, Cheng XH, Luo P, Pan SJ, He Q (2015) Supervised representation learning: transfer learning with deep autoencoders. In: IJCAI, pp 4119–4125

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 61273143 and 61472424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhu Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, Y. & Cheng, Y. Domain adaptation network based on hypergraph regularized denoising autoencoder. Artif Intell Rev 52, 2061–2079 (2019). https://doi.org/10.1007/s10462-017-9576-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9576-0

Keywords

Navigation