Skip to main content
Log in

Chemical, ecological, other? Identifying weed management typologies within industrialized cropping systems in Georgia (U.S.)

  • Published:
Agriculture and Human Values Aims and scope Submit manuscript

Abstract

Since the introduction and widespread adoption of chemical herbicides, “weed management” has become almost synonymous with “herbicide management.” Over-reliance on herbicides and herbicide-resistant crops has given rise to herbicide resistant weeds. Integrated weed management (IWM) identifies three strategies for weed management— biological-cultural, chemical-technological, mechanical-physical—and recommends combining all three to mitigate herbicide resistance. However, adoption of IWM has stalled, and research to understand the adoption of IWM practices has focused on single stakeholder groups, especially farmers. In contrast, decisions about weed management often occur within a social ecosystem where multiple stakeholder groups co-create knowledge and practices. To more holistically investigate perceptions and decision-making related to herbicide resistant weed management, we conducted 23 in-depth interviews in combination with Q methodology with farmers and public-/private-sector agricultural professionals in the state of Georgia (U.S.). Our investigation focused on the management of an increasingly herbicide resistant weed, Palmer amaranth, which enabled broader conversations about agricultural systems, farmer livelihoods, and sustainability. Factor and thematic analyses allowed us to identify and characterize two distinct typologies: one primarily valued agronomic efficiency and relied upon chemical-technological management practices, while the other valued diversifying weed management strategies as the pathway to agronomic and economic success. Typologies diverged substantially in attitudes toward the three weed management strategies, the role of technology, and systems management generally. These two viewpoints have implications for how we understand underlying stakeholder motivations and choices around weed management strategies, both of which are crucial in promoting and supporting farmer use of diverse, ecologically-sound, weed management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HR:

herbicide-resistant

IWM:

integrated weed management

MOA:

mechanism of action

QM:

Q methodology

UGA:

University of Georgia

US:

United States

References

  • Alexander, K., L. Parry, P. Thammavong, S. Sacklokham, S. Pasouvang, J. Connell, T. Jovanovic, M. Moglia, S. Larson, and P. Case. 2018. Rice farming systems in Southern Lao PDR: interpreting farmers’ agricultural production decisions using Q methodology. Agricultural Systems 160: 1–10.

    Article  Google Scholar 

  • Arbuckle, J., and G. Roesch-McNally. 2015. Cover crop adoption in Iowa: the role of perceived practice characteristics. Journal of Soil and Water Conservation 70(6): 418–429.

    Article  Google Scholar 

  • ATLAS.ti Scientific Software Development GmbH [ATLAS.ti Web, v9]. 2020. Retrieved from https://atlasti.com.

  • Banasick, S. 2019. KADE: a desktop application for Q methodology. Journal of Open Source Software 4: 1360.

    Article  Google Scholar 

  • Berger, S., P. Madeira, J. Ferrell, L. Gettys, S. Morichetti, J. Cantero, and C. Nuñez. 2016. Palmer Amaranth (Amaranthus palmeri) identification and documentation of ALS-resistance in Argentina. Weed Science 64: 312–320.

    Article  Google Scholar 

  • Bergtold, J., S. Ramsey, L. Maddy, and J. Williams. 2019. A review of economic considerations for cover crops as a conservation practice. Renewable Agriculture and Food Systems 34(1): 62–76.

    Article  Google Scholar 

  • Bétrisey, F., V. Boisvert, and J. Sumberg. 2022. Superweed amaranth: Metaphor and the power of a threatening discourse. Agriculture and Human Values 39(2): 505–520.

    Article  Google Scholar 

  • Blanco-Canqui, H., and S. Ruis. 2020. Cover crop impacts on soil physical properties: a review. Soil Science Society of America Journal 84(5): 1527–1576.

    Article  Google Scholar 

  • Bonny, S. 2016. Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environmental Management 57(1): 31–48.

    Article  Google Scholar 

  • Braun, V., and V. Clarke. 2019. Reflecting on reflexive thematic analysis. Qualitative Research in Sport Exercise and Health 11(4): 589–597.

    Article  Google Scholar 

  • Bressler, A., M. Plumhoff, L. Hoey, and J. Blesh. 2021. Cover Crop champions: linking strategic communication approaches with farmer networks to support cover crop adoption. Society and Natural Resources 34(12): 1602–1619.

    Article  Google Scholar 

  • Brown, S. 1980. Political subjectivity: applications of Q methodology in political science. New Haven, CT: Yale University Press.

    Google Scholar 

  • Brown, S. 2019. Subjectivity in the human sciences. The Psychological Record 69(4): 565–579.

    Article  Google Scholar 

  • Brown, C., E. Kovács, I. Herzon, S. Villamayor-Tomas, A. Albizua, A. Galanaki, I. Grammatikopoulou, D. McCracken, J. Olsson, and Y. Zinngrebe. 2021. Simplistic understandings of farmer motivations could undermine the environmental potential of the common agricultural policy. Land Use Policy 101: 105136.

    Article  Google Scholar 

  • Buchanan, G. 1976. Weeds and weed management in cotton. Beltwide Cotton Production Research Conferences, 166–168.

  • Chami, B., M. Niles, S. Parry, S. Mirsky, V. Ackroyd, and M. Ryan. 2023. Incentive programs promote cover crop adoption in the northeastern United States. Agricultural & Environmental Letters 8(2): e20114.

    Article  Google Scholar 

  • Charatsari, C., E. Lioutas, A. Papadaki-Klavdianou, A. Koutsouris, and A. Michailidis. 2022. Experiential, Social, Connectivist, or transformative learning? Farm advisors and the construction of Agroecological Knowledge. Sustainability 14(4): 2426.

    Article  Google Scholar 

  • Chouinard, H., T. Paterson, P. Wandschneider, and A. Ohler. 2008. Will farmers trade profits for stewardship? Heterogeneous motivations for farm practice selection. Land Economics 84(1): 66–82.

    Article  Google Scholar 

  • Church, S., J. Lu, P. Ranjan, A. Reimer, and L. Prokopy. 2020. The role of systems thinking in cover crop adoption: implications for conservation communication. Land Use Policy 94: 104508.

    Article  Google Scholar 

  • Coble, H., and B. Barnett. 2013. Why do we subsidize crop insurance? American Journal of Agricultural Economics 95(2): 498–504.

    Article  Google Scholar 

  • Cochrane, W. 1993. Development of American agriculture: a historical analysis. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Cowan, R., and P. Gunby. 1996. Sprayed to death: path dependence, lock-in and pest control strategies. The Economic Journal 106(436): 521–542.

    Article  Google Scholar 

  • Creswell, J. 2007. Qualitative inquiry & research design: choosing among five approaches. Thousand Oaks, CA: Sage Publications, Inc.

    Google Scholar 

  • Culpepper, A., T. Grey, W. Vencill, J. Kichler, T. Webster, S. Brown, A. York, J. Davis, and W. Hanna. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Science 54: 620–626.

    Article  Google Scholar 

  • Culpepper, A., T. Webster, L. Sosnoskie, A. York, and V. Nandula. 2010. Glyphosate-Resistant Palmer amaranth in the United States in glyphosate resistance. In Crops and weeds: history, development, and management, ed. V. Nandula. 195–212. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Dentzman, K., and R. Jussaume. 2017. The ideology of U.S. agriculture: how are integrated management approaches envisioned? Society and Natural Resources 30(11): 1311–1327.

    Article  Google Scholar 

  • Dentzman, K., R. Gunderson, and R. Jussaume. 2016. Techno-optimism as a barrier to overcoming herbicide resistance: comparing farmer perceptions of the future potential of herbicides. Journal of Rural Studies 48: 22–32.

    Article  Google Scholar 

  • Desquilbet, M., D. Bullock, and F. D’Arcangelo. 2019. A discussion of the market and policy failures associated with the adoption of herbicide-tolerant crops. International Journal of Agricultural Sustainability 17(5): 326–337.

    Article  Google Scholar 

  • Ervin, D., and R. Jussaume. 2014. Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Science 62(2): 403–414.

    Article  Google Scholar 

  • Espig, M., and R. Henwood. 2023. The social foundations for re-solving herbicide resistance in Canterbury, New Zealand. PLOS One 18(6): e0286515.

    Article  Google Scholar 

  • Floress, K., G. de Jalón, S. Church, N. Babin, J. Ulrich-Schad, and L. Prokopy. 2017. Toward a theory of farmer conservation attitudes: dual interests and willingness to take action to protect water quality. Journal of Environmental Psychology 53: 73–80.

    Article  Google Scholar 

  • Frisvold, G., T. Hurley, and P. Mitchell. 2009. Adoption of best management practices to control weed resistance by corn, cotton, and soybean growers. AgBioForum 12: 370–381.

  • Gardezi, M., and J. Arbuckle. 2020. Techno-optimism and farmers’ attitudes toward climate change adaptation. Environment and Behavior 52(1): 82–105.

    Article  Google Scholar 

  • Gould, F., Z. Brown, and J. Kuzma. 2018. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360(6390): 728–732.

    Article  Google Scholar 

  • Hancock, G., Y. Liu, A. Smith, and A. Plastina. 2020. Motivations and challenges of cover crop utilization for Georgia crop production. Journal of ASFMRA, 122–128.

  • Hand, L., T. Randell, R. Nichols, L. Steckel, N. Basinger, and A. Culpepper. 2021. Cover crops and residual herbicides reduce selection pressure for Palmer amaranth resistance to dicamba-applied postemergence in cotton. Agronomy Journal 113(6): 5373–5382.

    Article  Google Scholar 

  • Harker, K., and J. O’Donovan. 2013. Recent weed control, weed management, and integrated weed management. Weed Technology 27(1): 1–11.

    Article  Google Scholar 

  • Harper, J. 1956. The evolution of weeds in relation to resistance to herbicides. Proceedings of the 3rd British Weed Control Conference, 179–188. Farnham, UK: British Weed Control Council.

  • Heap, I. 2023. The International Herbicide-resistant weed database. www.weedscience.org, Accessed 12 November 2023.

  • Hendrickson, M., and H. James. 2005. The ethics of constrained choice: how the Industrialization of agriculture impacts farming and farmer behavior. Journal of Agricultural and Environmental Ethics 18: 269–291.

    Article  Google Scholar 

  • Houser, M., and D. Stuart. 2020. An accelerating treadmill and an overlooked contradiction in industrial agriculture: climate change and nitrogen fertilizer. Journal of Agrarian Change 20(2): 215–237.

    Article  Google Scholar 

  • Iles, A., and R. Marsh. 2012. Nurturing diversified farming systems in industrialized countries: how public policy can contribute. Ecology and Society 17(4): 42.

    Article  Google Scholar 

  • Jussaume, R., K. Dentzman, and M. Owen. 2019. Producers, weeds, and society. Journal of Integrated Pest Management 10(1): 6.

    Article  Google Scholar 

  • Jussaume, R., K. Dentzman, G. Frisvold, D. Ervin, and M. Owen. 2022. Factors that influence on-farm decision-making: evidence from weed management. Society and Natural Resources 35(5): 527–546.

    Article  Google Scholar 

  • Kniss, A. 2018. Genetically engineered herbicide-resistant crops and herbicide-resistant weed evolution in the United States. Weed Science 66(2): 260–273.

    Article  Google Scholar 

  • Kroma, M. 2006. Organic farmer networks: facilitating learning and innovation for sustainable agriculture. Journal of Sustainable Agriculture 28(4): 5–28.

    Article  Google Scholar 

  • Küpper, A., E. Borgato, E. Patterson, A. Netto, M. Nicolai, S. de Carvalho, S. Nissen, T. Gaines, and P. Christoffoleti. 2017. Multiple resistance to glyphosate and acetolactate synthase inhibitors in Palmer Amaranth (Amaranthus palmeri) identified in Brazil. Weed Science 65: 317–326.

    Article  Google Scholar 

  • Lehrer, N., and G. Sneegas. 2018. Beyond polarization: using Q methodology to explore stakeholders’ views on pesticide use, and related risks for agricultural workers, in Washington State’s tree fruit industry. Agriculture and Human Values 35: 131–147.

    Article  Google Scholar 

  • Leon, R., and D. Wright. 2018. Recurrent changes of weed seed bank density and diversity in crop-livestock systems. Agronomy Journal 110(3): 1068–1078.

    Article  Google Scholar 

  • Leon, R., D. Wright, and J. Marois. 2015. Weed seed banks are more dynamic in a sod-based, than in a conventional, peanut–cotton rotation. Weed Science 63(4): 877–887.

    Article  Google Scholar 

  • Levins, R., and W. Cochrane. 1996. The treadmill revisited. Land Economics 72(4): 550–553.

    Article  Google Scholar 

  • Liebman, M., E. Gallandt, and L. Jackson. 1997. Many little hammers: ecological management of crop-weed interactions. Ecology in Agriculture 1: 291–343.

    Article  Google Scholar 

  • Liebman, M., B. Baraibar, Y. Buckley, D. Childs, S. Christensen, R. Cousens, H. Eizenberg, S. Heijting, D. Loddo, A. Merotto Jr, M. Renton, and M. Riemens. 2016. Ecologically sustainable weed management: how do we get from proof-of-concept to adoption? Ecological Applications 26(5): 1352–1369.

    Article  Google Scholar 

  • Liebowitz, S., and S. Margolis. 1995. Path dependence, lock-in, and history. The Journal of Law Economics and Organization 11(1): 205–226.

    Google Scholar 

  • Magrini, M., M. Anton, C. Cholez, G. Corre-Hellou, G. Duc, M. Jeuffroy, J. Meynard, E. Pelzer, A.Voisin, and S. Walrand. 2016. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecological Economics 126: 152–162.

    Article  Google Scholar 

  • Maryland Department of Agriculture. 2022. Cover Crop Program. https://mda.maryland.gov/resource_conservation/pages/cover_crop.aspx. Accessed 6 April 2022.

  • Menalled, F., R. Peterson, R. Smith, W. Curran, D. Páez, and B. Maxwell. 2016. The eco-evolutionary imperative: revisiting weed management in the midst of an herbicide resistance crisis. Sustainability 8(12): 1297.

    Article  Google Scholar 

  • Meynard, J., F. Charrier, M. Fares, M. Le Bail, M. Magrini, A. Charlier, and A. Messéan. 2018. Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development 38: 1–13.

    Article  Google Scholar 

  • Myers, R. 2019. A preliminary look at state rankings for cover crop acreage based on Census of Agriculture information. University of Missouri and NCR-SARE Program. https://www.no-tillfarmer.com/ext/resources/download/State-Rankings-on-Cover-Crop-Acres.pdf. Accessed 12 August 2023.

  • Neve, P. 2007. Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Research 47(5): 365–369.

    Article  Google Scholar 

  • Neve, P., R. Busi, M. Renton, and M. Vila-Aiub. 2014. Expanding the eco-evolutionary context of herbicide resistance research. Pest Management Science 70(9): 1385–1393.

    Article  Google Scholar 

  • Nichols, V., R. Martinez-Feria, D. Weisberger, S. Carlson, B. Basso, and A. Basche. 2020. Cover crops and weed suppression in the U.S. Midwest: a meta-analysis and modeling study. Agricultural & Environmental Letters 5(1): e20022.

    Article  Google Scholar 

  • Norsworthy, J., S. Ward, D. Shaw, R. Llewellyn, R. Nichols, T. Webster, and K. Bradley. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science 60(ST1): 31–62.

    Article  Google Scholar 

  • O’Connell, C., and D. Osmond. 2018. Carolina dreamin’: a case for understanding farmers’ decision-making and hybrid agri-environmental governance initiatives as complex assemblages. In Agri-Environmental Governance as an assemblage, eds. J. Forney, C. Rosin, and H. Campbell. 38–58. London: Routledge.

    Chapter  Google Scholar 

  • Owen, M., H. Beckie, J. Leeson, J. Norsworthy, and L. Steckel. 2015. Integrated pest management and weed management in the United States and Canada. Pest Management Science 71(3): 357–376.

    Article  Google Scholar 

  • Pereira, M., J. Fairweather, K. Woodford, and P. Nuthall. 2016. Assessing the diversity of values and goals amongst Brazilian commercial-scale Progressive beef farmers using Q-methodology. Agricultural Systems 144: 1–8.

    Article  Google Scholar 

  • Popovici, R., P. Ranjan, M. Bernard, E. Usher, K. Johnson, and L. Prokopy. 2023. The social factors influencing cover crop adoption in the Midwest: a controlled comparison. Environmental Management 72: 614–629.

    Article  Google Scholar 

  • Previte, J., B. Pini, and F. Haslam-McKenzie. 2007. Q methodology and rural research. Sociologia Ruralis 47(2): 135–147.

    Article  Google Scholar 

  • Price, A., H. Schomberg, S. Culpepper, R. Nichols, K. Balkcom, and J. Kelton. 2011. Glyphosate-Resistant Palmer amaranth: a threat to conservation tillage. Journal of Soil and Water Conservation 66(4): 265–275.

    Article  Google Scholar 

  • Reimer, A., A. Thompson, and L. Prokopy. 2012. The multi-dimensional nature of environmental attitudes among farmers in Indiana: implications for conservation adoption. Agriculture and Human Values 29(1): 29–40.

    Article  Google Scholar 

  • Riar, D., J. Norsworthy, L. Steckel, D. Stephenson, T. Eubank, J. Bond, and R. Scott. 2013. Adoption of best management practices for herbicide-resistant weeds in Midsouthern United States cotton, rice, and soybean. Weed Technology 27(4): 788–797.

    Article  Google Scholar 

  • Roberts, J., and S. Florentine. 2021. A review of the biology, distribution patterns and management of the invasive species Amaranthus palmeri S. Watson (Palmer Amaranth): current and future management challenges. Weed Research 62(2): 113–122.

    Article  Google Scholar 

  • Rosenzweig, S., M. Carolan, and M. Schipanski. 2019. A dryland cropping revolution? Linking an emerging soil health paradigm with shifting social fields among wheat growers of the high plains. Rural Sociology 85(2): 545–574.

    Article  Google Scholar 

  • Saldaña, J. 2015. The Coding Manual for qualitative researchers. 3rd ed. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Schewe, L., and D. Stuart. 2017. Why don’t they just change? Contract farming, informational influence, and barriers to agricultural climate change mitigation. Rural Sociology 82(2): 226–262.

    Article  Google Scholar 

  • Shaner, D. 2014. Lessons learned from the history of herbicide resistance. Weed Science 62(2): 427–431.

    Article  Google Scholar 

  • Shaw, D. 2016. The wicked nature of the herbicide resistance problem. Weed Science 64(S1): 552–558.

    Article  Google Scholar 

  • Sheeder, R., and G. Lynne. 2011. Empathy-conditioned conservation: walking in the shoes of others as a conservation farmer. Land Economics 87(3): 433–452.

    Article  Google Scholar 

  • Skaalsveen, K., J. Ingram, and J. Urquhart. 2020. The role of farmers’ social networks in the implementation of no-till farming practices. Agricultural Systems 181: 102824.

    Article  Google Scholar 

  • Sneegas, G., S. Beckner, C. Brannstrom, W. Jepson, K. Lee, and L. Seghezzo. 2021. Using Q-methodology in environmental sustainability research: a bibliometric analysis and systematic review. Ecological Economics 180: 106864.

    Article  Google Scholar 

  • Stone, G. 2016. Towards a general theory of agricultural knowledge production: Environmental, social, and didactic learning. Culture Agriculture Food and Environment 38(1): 5–17.

    Article  Google Scholar 

  • Swanton, C., K. Mahoney, K. Chandler, and R. Gulden. 2008. Integrated weed management: knowledge-based weed management systems. Weed Science 56(1): 168–172.

    Article  Google Scholar 

  • Thapa, R., S. Mirsky, and K. Tully. 2018. Cover crops reduce nitrate leaching in agroecosystems: a global meta-analysis. Journal of Environmental Quality 47(6): 1400–1411.

    Article  Google Scholar 

  • Thompson, A., A. Reimer, and L. Prokopy. 2015. Farmers’ views of the environment: the influence of competing attitude frames on landscape conservation efforts. Agriculture and Human Values 32: 385–399.

    Article  Google Scholar 

  • USDA ERS [Economic Research Service]. 2022. Adoption of Genetically Engineered Crops in the US. https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-u-s/. Accessed 30 May 2023.

  • USDA NASS [National Agricultural Statistics Service]. n.d. Quick Stats. https://quickstats.nass.usda.gov/. Accessed 12 October 2019.

  • USDA NASS [National Agriculture Statistics Service]. 2012. Census of Agriculture Web Maps. www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Ag_Census_Web_Maps/Overview/. Accessed 25 Feb 2023.

  • USDA NASS [National Agriculture Statistics Service]. 2017. Census of Agriculture. www.nass.usda.gov/AgCensus. Accessed 25 Feb 2023.

  • Vanloqueren, G., and P. Baret. 2009. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy 38(6): 971–983.

    Article  Google Scholar 

  • Wallace, J., W. Curran, and D. Mortensen. 2019. Cover crop effects on horseweed (Erigeron canadensis) density and size inequality at the time of herbicide exposure. Weed Science 67(3): 327–338.

    Article  Google Scholar 

  • Wallander, S., D. Smith, M. Bowman, and R. Claassen. 2021. Cover crop trends, programs, and practices in the United States. Economic Information Bulletin. No. 222. https://www.ers.usda.gov/webdocs/publications/100551/eib-222.pdf. Accessed 02 December 2023.

  • Ward, S., T. Webster, and L. Steckel. 2013. Palmer Amaranth (Amaranthus palmeri): a review. Weed Technology 27(1): 12–27.

    Article  Google Scholar 

  • Watts, S., and P. Stenner. 2012. Doing Q Methodological Research: theory, Method and Interpretation. London: Sage Publications Ltd.

    Book  Google Scholar 

  • Webster, T., and L. Sosnoskie. 2010. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton. Weed Science 58(1): 73–79.

    Article  Google Scholar 

  • Weisberger, D., M. McDaniel, J. Arbuckle, and M. Liebman. 2021. Farmer perspectives on benefits of and barriers to extended crop rotations in Iowa, USA. Agricultural and Environmental Letters 6(2): e20049.

    Article  Google Scholar 

  • Weisberger, D., L. Bastos, V. Sykes, and N. Basinger. 2023. Do cover crops suppress weeds in the U.S. Southeast? A meta-analysis. Weed Science 71(3): 244–254.

    Article  Google Scholar 

  • Wijaya, A., and A. Offermans. 2019. Public agricultural extension workers as boundary workers: identifying sustainability perspectives in agriculture using Q-methodology. The Journal of Agricultural Education and Extension 25(1): 3–24.

    Article  Google Scholar 

  • Wilson, C., and C. Tisdell. 2001. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics 39(3): 449–462.

    Article  Google Scholar 

  • Wu, S., B. Goodwin, and K. Coble. 2020. Moral hazard and subsidized crop insurance. Agricultural Economics 51: 131–142.

    Article  Google Scholar 

  • Zimdahl, R. 2010. A history of Weed Science in the United States. London: Elsevier.

    Google Scholar 

  • Zimdahl, R. 2022. Agriculture’s ethical Horizon. London: Elsevier.

    Google Scholar 

Download references

Acknowledgements

A sincere thanks to our research participants for sharing their time and perspectives. We also thank Dr. Lloyd Rieber (UGA Department of Workforce Education and Instructional Technology), whose expertise and insight related to Q Methodology helped us immensely throughout this project. This project was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Southern Sustainable Agriculture Research and Education program under subaward number GS19-217. USDA is an equal opportunity employer and service provider. Funding from Cotton, Inc. (Project Number 20-280) partially supported David Weisberger’s time on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Jo Thompson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisberger, D., Ray, M.A., Basinger, N.T. et al. Chemical, ecological, other? Identifying weed management typologies within industrialized cropping systems in Georgia (U.S.). Agric Hum Values (2024). https://doi.org/10.1007/s10460-023-10530-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10460-023-10530-7

Keywords

Navigation