Skip to main content

Advertisement

Log in

Effects of alternative silvicultural systems on litter decomposition and nutrients dynamics in sub-Antarctic forests

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Forest harvesting is one of the main economic practices in South Patagonia. The impacts produced by forest harvesting have been studied by numerous investigations. And it is known that forest harvesting affects the decomposition of soil organic matter. However, there is no data about how the harvesting by variable-retentions affect this decomposition. Our objective was to determine how impact variable-retention upon decomposition and nutrient release in Nothofagus pumilio forest soils. We hypothesized that variable-retention accelerate decomposition and nutrient release. We compared primary and harvested forests with two types of retentions (aggregated and dispersed) and two times [1 and 5 years after harvesting (YAH)]. To measure litter decomposition, we used bag technique for to determine organic matter loss. We determined carbon; nitrogen; calcium; potassium; magnesium and lignin concentrations in decomposing material. We analysed the data using linear mixed models ANOVA. Decomposition rates were estimated as derivate of the linear mixed model for the logarithm of the remaining leaf litter weight. We found that dispersed retentions treatment had the highest decomposition rates. Primary forest and aggregated retentions had the smaller slopes of the decomposition model. Dispersed and aggregated retention 5 YAH retained more nitrogen compared to primary forest. Dispersed retention 5 YAH had the lowest C/N ratio. Primary forest had higher Lignin/N ratio at 540 incubation days. Dispersed retention 5 YAH released more phosphorus compared to primary forest. Dispersed and aggregated retention 1 YAH had higher C/P ratio. Dispersed retention 5 YAH presented the most mineralization of potassium in the initial time of decomposition. We conclude that the harvesting by variable-retentions had an immediate negative effect on litter decomposition and the nutrients dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Caluwe HD (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260

    Article  Google Scholar 

  • Alfonso JL (1942) Los bosques de Tierra del Fuego. Rev Suelo Argent 1:47–51

    Google Scholar 

  • Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York, p 184

    Book  Google Scholar 

  • Bahamonde HA, Peri PL, Martínez Pastur G, Lencinas V (2009) Variaciones microclimáticas en bosques primarios y bajo uso silvopastoril de Nothofagus antarctica en dos Clases de Sitio en Patagonia Sur

  • Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2012) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84:345–360

    Article  Google Scholar 

  • Barrera MD, Frangi JL, Ferrando JJ, Goya JF (2004) Descomposición del mantillo y liberación foliar neta de nutrientes de Austrocedrus chilensis (D. Don) Pic. Serm. Et Bizzarri en El Bolsón, Río Negro. Ecol Austral 14:99–112

    Google Scholar 

  • Beese WJ, Bryant AA (1999) Effect of alternative silvicultural systems on vegetation and bird communities in coastal montane forests of British Columbia, Canada. For Ecol Manage 115:231–242

    Article  Google Scholar 

  • Berg B, Laskowski R (1997) Changes in nutrient concentrations and nutrient release in decomposing needle litter in monocultural systems of Pinus contorta and Pinus sylvestris: a comparison and synthesis. Scand J For Res 12:113–121

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2a edn. Springer, Berlin, p 338

    Book  Google Scholar 

  • Bitterlich W (1984) The relascope idea. Relative measurements in forestry. Commonwealth Agricultural Bureaux, Londres, p 242

    Google Scholar 

  • Bocock K, Gilbert O, Capstick C, Twinn D, Waid J, Woodman M (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of ok and ash leaf litter. J Soil Sci 11:1–9

    Article  CAS  Google Scholar 

  • Brancaleoni L, Strelin J, Gerdol R (2003) Relationships between geomorphology and vegetation patterns in subantarctic Andean tundra of Tierra del Fuego. Polar Biol 26(6):404–410

    Google Scholar 

  • Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Change Biol 13:2193–2205

    Article  Google Scholar 

  • Caldentey J, Ibarra M, Hernández J (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157

    Article  Google Scholar 

  • Collado L (2001) Los bosques de Tierra del Fuego: análisis de su estratificación mediante imágenes satelitales para el inventario forestal de la provincia. Multequina 10:1–15

    Google Scholar 

  • Deferrari G, Camilion C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: 2 birds. Biodiv Conserv 10:2093–2108

    Article  Google Scholar 

  • Dirección de Bosques TDF (2016) Informe de estadísticas de aprovechamiento forestal correspondiente al período 2015–2016 and análisis comparativo de estadísticas históricas

  • Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11(5):1287–1300

    Article  Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New York, p 362

    Google Scholar 

  • Frangi JL, Barrera MD, Richter LL, Lugo AE (2005) Nutrient cycling in Nothofagus pumilio forest along and altitudinal gradient in Tierra del Fuego, Argentina. For Ecol Manage 217:80–94

    Article  Google Scholar 

  • Franklin JF, Berg DR, Thornburgh DA, Tappeiner JC (1997) Alternative silvicultural approaches to timber harvesting. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. The science of ecosystem management. Island Press, Washington, DC, pp 111–139

    Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Gea G, Martínez Pastur G, Cellini JM, Lencinas MV (2004) Forty years of silvicultural management in southern Nothofagus pumilio (Poepp. et Endl.) Krasser primary forests. For Ecol Manage 201(2–3):335–347

    Google Scholar 

  • Gilliam F, Yurish B, Adams M (2001) Temporal and spatial variation of nitrogen transformation in nitrogen-saturated soil of a central Appalachian hardwood forest. Can J For Res 32:1768–1785

    Article  Google Scholar 

  • Godeas M, Arambarri A, Gamundi I, Spinedi H (1985) Descomposición de la hojarasca en bosque de Lenga. Ciencias Suelo 3(1–2):68–77

    Google Scholar 

  • Harmon M, Nadelhoffer K, Blair J (1999) Measuring decomposition, nutrient turnover and stores in plant litter. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 202–271

    Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Ibarra M, Caldentey J, Promis A (2011) Descomposición de hojarasca en rodales de Nothofagus pumilio de la región de Magallanes. Bosque 32(3):227–233

    Article  Google Scholar 

  • Idol TW, Pope PE, Ponder F (2003) N mineralization, nitrification, and N uptake across a 100–year chronosequence of upland hardwood forests. For Ecol Manage 176:509–518

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources, 2nd edn. World Soil Resources Reports No. 103. FAO, Rome, 133 pp

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140:227–238

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Laskowski R, Berg B, Johansson M, McClaugherty C (1995a) Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest X. Can J Bot 73:2019–2027

    Article  CAS  Google Scholar 

  • Laskowski R, Niklinska M, Maryañski M (1995b) The dynamics of chemical elements in forest litter. Ecology 76:1393–1406

    Article  Google Scholar 

  • Martinez Pastur G, Lencinas MV (2005) El manejo forestal en los bosques de Nothofagus pumilio en Tierra del Fuego. IDIA XXI 01 5(8):107–110

    Google Scholar 

  • Martínez Pastur G, Cellini JM, Peri PL, Vukasovic RF, Fernández MC (2000a) Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). For Ecol Manage 134:153–162

    Article  Google Scholar 

  • Martínez Pastur G, Lencinas MV, Vukasovic R, Peri P, Diaz B, Cellini JM (2000a) Turno de corta y posibilidad de los bosques de lenga de Tierra del Fuego (Argentina) considerando la influencia del ganado, el manejo silvícola and la calidad de sitio. Actas Reunión Internacional: Modelos and Métodos estadísticos Aplicados a Bosques Naturales. Valdivia, Chile, pp 20–21

  • Martínez Pastur G, Lencinas MV, Cellini J, Diaz B, Peri P, Vukasovic R (2002a) Herramientas disponibles para la construcción de un modelo de producción para la lenga (Nothofagus pumilio) bajo manejo en un gradiente de calidades de sitio. Bosque 23(2):69–80

    Article  Google Scholar 

  • Martínez Pastur G, Peri P, Fernández M, Staffieri G, Lencinas MV (2002b) Changes in understory species diversity during the Nothofagus pumilio forest management cycle. J For Res 7(3):165–174

    Article  Google Scholar 

  • Martínez Pastur GJ, Lencinas MV, Peri PL, Moretto A, Cellini JM, Vukasovic R (2007) Harvesting adaptation to biodiversity conservation in sawmill industry: technology innovation and monitoring program. Technol Manag Innov 2(3):58–70

    Google Scholar 

  • Martínez Pastur G, Cellini JM, Peri P, Lencinas MV, Gallo E, Soler Esteban R (2009) Alternative silviculture with variable retention in timber management of South Patagonia. For Ecol Manage 258:436–443

    Article  Google Scholar 

  • Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri P (2011) Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For Ecol Manage 261:178–186

    Article  Google Scholar 

  • Martínez Pastur G, Soler Esteban R, Pulido F, Lencinas MV (2013) Variable retention harvesting influences biotic and abiotic drivers along the reproductive cycle in southern Patagonian forests. For Ecol Manage 289(1):106–114

    Article  Google Scholar 

  • Mitchell SJ, Beese WJ (2002) The retention system: reconciling variable retention with the principles of silvicultural systems. For Chron 78(3):397–403

    Article  Google Scholar 

  • Moretto A, Martínez Pastur G (2014) Litterfall and leaf decomposition in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J For Sci 60(12):500–510

    Article  Google Scholar 

  • Moretto A, Martínez Pastur G, Peri P (2004) Producción de hojarasca en diferentes sistemas de regeneración con retención dispersa y agregada en bosques de Nothofagus pumilio. Actas del Segundo Congreso Chileno de Ciencias Forestales. Valdivia, Chile, 7 pp

    Google Scholar 

  • Nóvoa Muñoz JC, Pontevedra Pombal X, Moretto A, Martínez Cortizas A, García-Rodeja Gayoso E (2007) Caracterización geoquímica de suelos forestales de Nothofagus pumilio (lenga) en un gradiente altitudinal en Tierra del Fuego, Argentina. In: Bellinfante N, Jordán A (eds) Tendencias Actuales de la Ciencia del Suelo. Actas del II Congreso Ibérico de Ciencia del Suelo, pp 689–696

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:331–332

    Article  Google Scholar 

  • Oro Castro, N. 2014. ¿Cómo varían los ciclos biogeoquímicos debido al aprovechamiento forestal en bosques de Nothofagus pumilio de Tierra del Fuego? Tesis de Doctorado en Biología. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina. p 137

  • Osono T, Takeda H (2004) Potassium, calcium and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res 9:23–31

    Article  CAS  Google Scholar 

  • Peña-Rodríguez S, Moretto A, Pontevedra-Pombal X, Oro N, García-Rodeja Gayoso E, Rodríguez-Salgado I, Rodríguez-Racedo J, Escobar J, Nóvoa-Muñoz JC (2013) Trends in nutrient reservoirs stored in uppermost soil horizons of subantarctic forests differing in their structure. Agrofor Syst 87(6):1273–1281

    Article  Google Scholar 

  • Pinheiro J, Bates DM (2000) Mixed-effects models in S and S-PLUS, 1st edn. Springer, New York, p 530

    Book  Google Scholar 

  • Prescott CE (2005) Decomposition and mineralization of nutrients from litter and humus. In: Nutrient acquisition by plants. Springer, Berlin, pp 15–41

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  • Richter L, Frangi J (1992) Bases ecológicas para el manejo del bosque de Nothofagus pumilio de Tierra del Fuego. Revista de la Facultad de Agronomía, La Plata. 68: 35–52

  • Ritter E, Starr M, Vesterdal L (2005) Losses of nitrate from gaps of different sizes in a managed beech (Fagus sylvatica) forest. Can J For Res 35:308–319

    Article  Google Scholar 

  • Schmidt H, Urzúa A (1982) Transformación y manejo de los bosques de Lenga en Magallanes. Universidad de Chile. Ciencias Agrícolas 11. 62 pp

  • Spagarino C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: insects. Biodivers Conserv 10:2077–2092

    Article  Google Scholar 

  • Suffling R, Smith D (1974) Litter decomposition studies using mesh bags: spillage inaccuracies and the effects of repeated artificial drying. Can J Bot 52:2157–2163

    Article  Google Scholar 

  • Sullivan TP, Sullivan DS, Lindgren PMF (2001) Stand structure and small mammals in young lodgepole pine forest: 10-year results after thinning. Ecol Appl 11:1151–1173

    Article  Google Scholar 

  • Swift M, Heal O, Anderson J (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, p 372

    Google Scholar 

  • Tukhanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 145:1–64

    Google Scholar 

  • Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds II: a rapid method for the determination of fiber and lignin. Ann Chem 46:829–835

    Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna-Loa environmental matrix, Hawaii—patterns, mechanisms, and models. Ecology 72:418–429

    Article  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  CAS  Google Scholar 

  • Vukasovic R, Martínez Pastur G, Cellini JM (2004) Plan de manejo forestal Los Cerros. Solicitante Aserradero Kareken (PRODIN SRL)

  • Yin X, Perry JA, Dixon RK (1989) Influence of canopy removal on oak forest floor decomposition. Can J For Res 19:204–214

    Article  Google Scholar 

  • Yoshida T, Iga Y, Ozawa M, Noguchi M, Shibata H (2005) Factors influencing early vegetation establishment following soil scarification in a mixed forest in northern Japan. Can J For Res 35:175–188

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sr. Roberto Fernández and Eng. Ricardo Vukasovic for their logistic assistance and Dr. Guillermo Martínez Pastur for his scientific and technical advice. We also like to thank the constructive criticism of an anonymous reviewer that greatly improved this manuscript. This study was funded by the Agencia Nacional de Promoción Científica y Tecnológica (PAV2004-22428 and PICTO FORESTAL-36861). N. Oro Castro and L. J. Selzer were recipient of a CONICET doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Oro Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oro Castro, N., Moretto, A., Selzer, L.J. et al. Effects of alternative silvicultural systems on litter decomposition and nutrients dynamics in sub-Antarctic forests. Agroforest Syst 93, 885–899 (2019). https://doi.org/10.1007/s10457-018-0183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0183-0

Keywords

Navigation