Skip to main content
Log in

First report of identification and molecular characterization of Tuber aestivum in Iran

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

During June 2013 to March 2014, several visits were made to the truffle-bearing areas of Kermanshah province, Iran. In this study, two specimens associated with roots of oak (Quercus brantii Lindl.) were identified as Tuber aestivum Vittad based on morphological and cytological characteristics. Internal transcribed spacer (ITS) region was amplified by PCR using primer pair ITS1/ITS4 and the sequences were analyzed. Phylogenetic trees constructed based on ITS sequences revealed that all Iranian specimens were in the same branch in a clade with T. aestivum reported from others. All T. aestivum sequences, including Iranian specimen, showed an average of 97 % similarity (ranged from 96 to 100 %). The results of physico-chemical analyses on soil samples collected from oak forest indicated that T. aestivum was prevalent in the sandy soil with rather low phosphorus concentration, low in organic matter, and high CaCo3. To our knowledge, this is the first report of T. aestivum and its host plant from Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baseia IG, Milanez AI (2002) Tulostoma persoon (gasteromycetes) from the Cerrado region, State of Sao Paulo, Brazil. Acta Bot Bras 16(1):09–14

    Article  Google Scholar 

  • Bencivenga M, Baciarelli FL (2012) Manuale di tartuficoltura. Esperienze di coltivazione dei tartufi in Umbria, Regione Umbria p 130

    Google Scholar 

  • Benucci GM et al (2011) Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 76(1):170–184

    Article  CAS  PubMed  Google Scholar 

  • Benucci GM et al (2012) Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22(5):383–392

    Article  PubMed  Google Scholar 

  • Bertault G et al (1998) Trifling variation in truffles. Nature 394(6695):734–734

    Article  CAS  Google Scholar 

  • Bougher NL, Lebel T (2001) Sequestrate (truffle-like) fungi of Australia and New Zealand. Aust Syst Bot 14(3):439–484

    Article  Google Scholar 

  • Bragato G et al (1999) Regionalization analysis of some soil factors related to Tuber melanosporum production in an experimental truffle bed.” Atti del “Vème Congrès International Science et Culture de la Truffe, pp 4–6

  • Bremner JM, Mulvaney C (1982) Nitrogen—total. Methods of soil analysis. Part 2. Chemical and microbiological properties (methods of soil analysis). pp 595–624

  • Ceruti A et al (2003) The specie europee del genere Tuber. Una revisione storica, Torino, p 467

  • Chevalier G, Frochot H (1997) La maîtrise de la culture de la truffe. Rev for fr 49:201–213

    Article  Google Scholar 

  • Chevalier G (2009) The truffle of Europe (Tuber aestivum Vittad.): ecology and possibility of cultivation. In: Abstracts: first conference on the “European” Truffle Tuber aestivum/uncinatum. 6–8.11.2009. Faculty Centre of Biodiversity, University of Vienna, Vienna, pp 1–2

  • Chevalier G, Sourzat P (2012) Soils and techniques for cultivating Tuber melanosporum and Tuber aestivum in Europe. Edible ectomycorrhizal mushrooms. Springer, Berlin, pp 163–189

    Google Scholar 

  • Daneshpajuh B (1991) Two New Species of Hypogeous Ascomycetes in Iran. In: Proceedings of the 10th Plant Protection Congress of Iran, p 56

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferdman Y et al (2005) Phylogenetic studies of Terfezia pfeilii and Choiromyces echinulatus (Pezizales) support new genera for southern African truffles: Kalaharituber and Eremiomyces. Mycol Res 109(02):237–245

    Article  CAS  PubMed  Google Scholar 

  • Fontana A, Giovannetti G (1978) 9 Sinbiosi micorrizica fra Cistus incanus L. ssp. incanus e Tuba melanosporum Vitt. Allionia 23:5–11

    Google Scholar 

  • García-Montero LG et al (2008) New data on ectomycorrhizae and soils of the Chinese truffles Tuber pseudoexcavatum and Tuber indicum, and their impact on truffle cultivation. Mycorrhiza 19(1):7–14

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gee G, Bauder J (1986) Particle-size analysis. In Page AL (ed) Methods of soil analysis, Part 1, physical and mineralogical methods, 2nd edn. Agronomy Monograph 9, American Society of Agronomy, Madison, pp 383–411

  • Gilkey HM (1954) Taxonomic notes on Tuberales. Mycologia 56:783–793

    Google Scholar 

  • Gilkey HM (1961) New species and revisions in the order Tuberales. Mycologia 53:215–220

    Article  Google Scholar 

  • Gryndler M et al (2011) Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol Lett 318(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series

  • Hall IR et al (2007) Taming the truffle: the history, lore, and science of the ultimate mushroom. Timber Press, Portland

  • Hansen K, Pfister DH (2006) Systematics of the Pezizomycetes—the operculate discomycetes. Mycologia 98(6):1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Harley J, Smith S (1985) Mycorrhizal symbiosis. Academic Press, London, Review by B Mosse in: J Exp Bot 36:1019

  • Hawker LE (1954) British hypogeous fungi. Philos Trans R Soc Lond B: Biol Sci 237(650):429–546

    Article  Google Scholar 

  • Hawksworth DL et al (1996) Ainsworth & Bisby’s dictionary of the fungi. Rev Inst Med Trop Sao Paulo 38(4):272–272

    Article  Google Scholar 

  • Iwański M et al (2006) Mycorrhizal associations of nursery grown Scots pine (Pinus sylvestris L.) seedlings in Poland. Ann For Sci 63(7):715–723

    Article  Google Scholar 

  • Jamali S, Banihashemi Z (2011) Identification, hosts, distribution and molecular phylogeny of desert truffles in Iran. Phytopathology 101(6):S81

    Google Scholar 

  • Jamali S, Banihashemi Z (2012a) Fungi associated with ascocarps of desert truffles from different parts of Iran. J Crop Protect 1:41–47

    Google Scholar 

  • Jamali S, Banihashemi Z (2012b) Hosts and distribution of desert truffles in Iran, based on morphological and molecular criteria. J Agric Sci Technol 14:1379–1396

    CAS  Google Scholar 

  • Jamali S, Banihashemi Z (2013a) Nested-PCR for detecting Terfezia claveryi in roots of Helianthemum species in field and greenhouse conditions. J Agric Sci Technol 15(2):377–388

    CAS  Google Scholar 

  • Jamali S, Banihashemi Z (2013b) Species-specific ITS primers for the identification of Picoa juniperi and Picoa lefebvrei and using nested-PCR for detection of P. juniperi in planta. Mol Biol Rep 40(10):5701–5712

    Article  CAS  PubMed  Google Scholar 

  • Jeandroz S et al (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35:815–829

    Article  Google Scholar 

  • Kumar S et al (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Sparks DL (ed), Methods of soil analysis. Chemical methods, Soil Science Society of America, American Society of Agronomy, Madison, pp 437–474

  • Malençon G (1973) Champignons Hypoges du Nord de IAfrique. I Ascomycetes Persoonia 7:261–288

  • Marjanovic Z et al (2010) Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 62(1):67–87

    Google Scholar 

  • Mello A et al (2000) Tuber borchii versus Tuber maculatum: neotype studies and DNA analyses. Mycologia 18:326–331

    Article  Google Scholar 

  • Mello A et al (2002) Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environ Microbiol 4(10):584–594

    Article  CAS  PubMed  Google Scholar 

  • Mello A et al (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Montecchi A, Sarasini M (2000) Funghi ipogei d´Europa. Trento-Vicenza Associaazione Micologica Bresadola-Fondacione centro Studi Micologici, p 714

  • O’Donnell K et al (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89:48–65

    Article  Google Scholar 

  • Paolocci F et al (2004) Tuber aestivum and Tuber uncinatum: two morphotypes or two species? FEMS Microbiol Lett 233(1):109–115

    Article  Google Scholar 

  • Pegler DN et al (1993) British truffles: a revision of british hypogeous fungi. Kew Royal Botanic Gardens, Surrey

    Google Scholar 

  • Rincon A et al (2006) Afforestation of degraded soils with Pinus halepensis Mill.: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl Soil Ecol 34(1):42–51

    Article  Google Scholar 

  • Roux C et al (1999) Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiol Lett 180(2):147–155

    Article  CAS  PubMed  Google Scholar 

  • Rubini A et al (2001) Analisi morfologica comparativa delle spore e caratterizzazione molecolare di Tuber indicum Cooke e Massee e Tuber melanosporum Vitt., pp 94–101. Actes du Ve Congres International “Science et culture de la truffe et des autres champignons hypogés comestibles.” Fédération française des trufficulteurs, Aix en Provence

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Song M et al (2005) Occurrence of Tuber aestivum in China. Mycotaxon 91:75–80

    Google Scholar 

  • Stielow B, Menzel W (2010) Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch Virol 155(12):2075–2078

    Article  CAS  PubMed  Google Scholar 

  • Stobbe U et al (2013) New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza 23(8):669–673

    Article  CAS  PubMed  Google Scholar 

  • Streiblova E et al (2010) Tuber aestivum–hypogeous fungus neglected in the Czech Republic. A review. Czech Mycol 61(2):163–173

    Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison

  • Thompson JD et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trappe JM (1971) A Synopsis of the Carbomycetaceae and Terfeziaceae (Tuberales). Trans Brit Mycol Soc 57:85–92

    Article  Google Scholar 

  • Trappe JM, Castellano MA (1991) Keys to the genera of truffles (Ascomycetes). McIlvanea 10:47–65

    Google Scholar 

  • Turgeman T et al (2012) Introduced Tuber aestivum replacing introduced Tuber melanosporum: a case study. Agrofor Syst 84(3):337–343

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Weden C et al (2005) Species recognition in the truffle genus Tuber- the synonyms Tuber aestivum and Tuber uncinatum. Environ Microbiol 7(10):1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Wedén C et al (2009) Truffle cultivation in Sweden: results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand J For Res 24(1):37–53

    Article  Google Scholar 

  • White TJ et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

  • Zambonelli C et al (2002) Effects of lactic acid bacteria autolysis on sensorial characteristics of fermented foods. Food Tech Biotechnol 40(4):347–351

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samad Jamali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, S. First report of identification and molecular characterization of Tuber aestivum in Iran. Agroforest Syst 91, 335–343 (2017). https://doi.org/10.1007/s10457-016-9932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9932-0

Keywords

Navigation