Skip to main content
Log in

Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Anthrax protective antigen (PA) is a potent inhibitor of pathological angiogenesis with an unknown mechanism. In anthrax intoxication, PA interacts with capillary morphogenesis gene 2 (CMG2) and tumor endothelial marker 8 (TEM8). Here, we show that CMG2 mediates the antiangiogenic effects of PA and is required for growth-factor-induced chemotaxis. Using specific inhibitors of CMG2 and TEM8 interaction with natural ligand, as well as mice with the CMG2 or TEM8 transmembrane and intracellular domains disrupted, we demonstrate that inhibiting CMG2, but not TEM8 reduces growth-factor-induced angiogenesis in the cornea. Furthermore, the antiangiogenic effect of PA was abolished when the CMG2, but not the TEM8, gene was disrupted. Binding experiments demonstrated a broad ligand specificity for CMG2 among extracellular matrix (ECM) proteins. Ex vivo experiments demonstrated that CMG2 (but not TEM8) is required for PA activity in human dermal microvascular endothelial cell (HMVEC-d) network formation assays. Remarkably, blocking CMG2-ligand binding with PA or CRISPR knockout abolishes endothelial cell chemotaxis but not chemokinesis in microfluidic migration assays. These effects are phenocopied by Rho inhibition. Because CMG2 mediates the chemotactic response of endothelial cells to peptide growth factors in an ECM-dependent fashion, CMG2 is well-placed to integrate growth factor and ECM signals. Thus, CMG2 targeting is a novel way to inhibit angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286. https://doi.org/10.1038/nrd2115

    Article  CAS  PubMed  Google Scholar 

  2. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569. https://doi.org/10.1101/cshperspect.a006569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kretschmer M, Rudiger D, Zahler S (2021) Mechanical aspects of angiogenesis. Cancers (Basel). https://doi.org/10.3390/cancers13194987

    Article  Google Scholar 

  4. Rogers MS, Christensen KA, Birsner AE, Short SM, Wigelsworth DJ, Collier RJ, D’Amato RJ (2007) Mutant anthrax toxin B moiety (protective antigen) inhibits angiogenesis and tumor growth. Cancer Res 67(20):9980–9985. https://doi.org/10.1158/0008-5472.CAN-07-0829

    Article  CAS  PubMed  Google Scholar 

  5. Moayeri M, Wiggins JF, Leppla SH (2007) Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect Immun 75(11):5175–5184. https://doi.org/10.1128/IAI.00719-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wigelsworth DJ, Krantz BA, Christensen KA, Lacy DB, Juris SJ, Collier RJ (2004) Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J Biol Chem 279(22):23349–23356

    Article  CAS  Google Scholar 

  7. Liu S, Crown D, Miller-Randolph S, Moayeri M, Wang H, Hu H, Morley T, Leppla SH (2009) Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc Natl Acad Sci USA 106(30):12424–12429

    Article  CAS  Google Scholar 

  8. Jia Z, Ackroyd C, Han T, Agrawal V, Liu Y, Christensen K, Dominy B (2017) Effects from metal ion in tumor endothelial marker 8 and anthrax protective antigen: BioLayer Interferometry experiment and molecular dynamics simulation study. J Comput Chem 38(15):1183–1190. https://doi.org/10.1002/jcc.24768

    Article  CAS  PubMed  Google Scholar 

  9. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JAT (2001) Identification of the cellular receptor for anthrax toxin. Nature 414(6860):225–229. https://doi.org/10.1038/n35101999

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Zhang Y, Hoover B, Leppla SH (2012) The receptors that mediate the direct lethality of anthrax toxin. Toxins (Basel) 5(1):1–8. https://doi.org/10.3390/toxins5010001

    Article  CAS  Google Scholar 

  11. Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F (2015) Anti-infective immunoadhesins from plants. Plant Biotechnol J 13(8):1078–1093. https://doi.org/10.1111/pbi.12441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wycoff KL, Belle A, Deppe D, Schaefer L, Maclean JM, Haase S, Trilling AK, Liu S, Leppla SH, Geren IN, Pawlik J, Peterson JW (2011) Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob Agents Chemother 55(1):132–139. https://doi.org/10.1128/AAC.00592-10

    Article  CAS  PubMed  Google Scholar 

  13. Burgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Burgi S, Lausch E, Unger S, Superti-Furga A, Bonaldo P, van der Goot FG (2017) CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat Commun 8:15861. https://doi.org/10.1038/ncomms15861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming T, St Croix B (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21(2):212–226. https://doi.org/10.1016/j.ccr.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reeves CV, Dufraine J, Young JA, Kitajewski J (2010) Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene 29(6):789–801

    Article  CAS  Google Scholar 

  16. Peters DE, Zhang Y, Molinolo AA, Miller-Randolph S, Szabo R, Bugge TH, Leppla SH, Liu S (2012) Capillary morphogenesis protein-2 is required for mouse parturition by maintaining uterine collagen homeostasis. Biochem Biophys Res Commun 422(3):393–397. https://doi.org/10.1016/j.bbrc.2012.04.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cryan LM, Bazinet L, Habeshian KA, Cao S, Clardy J, Christensen KA, Rogers MS (2013) 1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose Inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J Med Chem 56(5):1940–1945. https://doi.org/10.1021/jm301558t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gd E, Carrero P, Madrona A, Rodriguez-Salamanca P, Martinez-Gualda B, Camarasa MJ, Jimeno ML, Bennallack PR, Finnell JG, Tsang TM, Christensen KA, San-Felix A, Rogers MS (2019) Galloyl carbohydrates with antiangiogenic activity mediated by capillary morphogenesis gene 2 (CMG2) protein binding. J Med Chem 62(8):3958–3970. https://doi.org/10.1021/acs.jmedchem.8b01988

    Article  CAS  Google Scholar 

  19. Finnell JG, Tsang TM, Cryan L, Garrard S, Lee SL, Ackroyd PC, Rogers MS, Christensen KA (2020) A canstatin-derived peptide provides insight into the role of capillary morphogenesis gene 2 in angiogenic regulation and matrix uptake. ACS Chem Biol 15(2):587–596. https://doi.org/10.1021/acschembio.0c00064

    Article  CAS  PubMed  Google Scholar 

  20. Rogers MS, Cryan LM, Habeshian KA, Bazinet L, Caldwell TP, Ackroyd PC, Christensen KA (2012) A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein. PLoS ONE 7(6):e39911. https://doi.org/10.1371/journal.pone.0039911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao S, Cryan L, Habeshian KA, Murillo C, Tamayo-Castillo G, Rogers MS, Clardy J (2012) Phenolic compounds as antiangiogenic CMG2 inhibitors from Costa Rican endophytic fungi. Bioorg Med Chem Lett 22(18):5885–5888. https://doi.org/10.1016/j.bmcl.2012.07.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lacy DB, Wigelsworth DJ, Scobie HM, Young JAT, Collier RJ (2004) Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. P Natl Acad Sci USA 101(17):6367–6372. https://doi.org/10.1073/pnas.0401506101

    Article  CAS  Google Scholar 

  23. Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13(10):3369–3387. https://doi.org/10.1091/mbc.E02-05-0259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao M, Schulten K (2006) Onset of anthrax toxin pore formation. Biophys J 90(9):3267–3279. https://doi.org/10.1529/biophysj.105.079376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scobie HM, Rainey GJA, Bradley KA, Young JAT (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 100(9):5170–5174. https://doi.org/10.1073/pnas.0431098100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114(Pt 15):2755–2773

    Article  CAS  Google Scholar 

  27. Cryan LM, Habeshian KA, Caldwell TP, Morris MT, Ackroyd PC, Christensen KA, Rogers MS (2013) Identification of small molecules that inhibit the interaction of TEM8 with anthrax protective antigen using a FRET assay. J Biomol Screen 18(6):714–725. https://doi.org/10.1177/1087057113478655

    Article  CAS  PubMed  Google Scholar 

  28. Vink JY, Charles-Horvath PC, Kitajewski JK, Reeves CV (2014) Anthrax toxin receptor 2 promotes human uterine smooth muscle cell viability, migration and contractility. Am J Obstet Gynecol 210(2):154e151-158. https://doi.org/10.1016/j.ajog.2013.09.030

    Article  CAS  Google Scholar 

  29. Lawson CD, Ridley AJ (2018) Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol 217(2):447–457. https://doi.org/10.1083/jcb.201612069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metast Rev 28(1–2):65–76. https://doi.org/10.1007/s10555-008-9170-7

    Article  CAS  Google Scholar 

  31. Castanon I, Abrami L, Holtzer L, Heisenberg CP, van der Goot FG, Gonzalez-Gaitan M (2013) Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol 15(1):28–39. https://doi.org/10.1038/ncb2632

    Article  CAS  PubMed  Google Scholar 

  32. Jérôme Bürgi LA, Castanon Irinka, Yan Shixu E, Luciano A, Abriata ML, Unger Sheila, Superti-Furga Andrea, Dal Peraro Matteo, Goot MGGaFGvd, (2019) A Novel talin-to-RhoA switch mechanism upon ligand binding of the collagen VI receptor CMG2. Developmental Cell. https://doi.org/10.2139/ssrn.3193408

    Article  Google Scholar 

  33. Zahra FT, Sajib MS, Ichiyama Y, Akwii RG, Tullar PE, Cobos C, Minchew SA, Doci CL, Zheng Y, Kubota Y, Gutkind JS, Mikelis CM (2019) Endothelial RhoA GTPase is essential for in vitro endothelial functions but dispensable for physiological in vivo angiogenesis. Sci Rep 9(1):11666. https://doi.org/10.1038/s41598-019-48053-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burgi J, Abrami L, Castanon I, Abriata LA, Kunz B, Yan SE, Lera M, Unger S, Superti-Furga A, Peraro MD, Gaitan MG, van der Goot FG (2020) Ligand binding to the collagen VI receptor triggers a talin-to-RhoA switch that regulates receptor endocytosis. Dev Cell 53(4):418–430414. https://doi.org/10.1016/j.devcel.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  35. Bayless KJ, Johnson GA (2011) Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 48(5):369–385. https://doi.org/10.1159/000324751

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martin M, Veloso A, Wu J, Katrukha EA, Akhmanova A (2018) Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. Elife. https://doi.org/10.7554/eLife.33864

    Article  PubMed  PubMed Central  Google Scholar 

  37. Welti JC, Gourlaouen M, Powles T, Kudahetti SC, Wilson P, Berney DM, Reynolds AR (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30(10):1183–1193. https://doi.org/10.1038/onc.2010.503

    Article  CAS  PubMed  Google Scholar 

  38. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. https://doi.org/10.1016/j.ccr.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  39. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA, Teh BT (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70(3):1063–1071. https://doi.org/10.1158/0008-5472.CAN-09-3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porta C, Paglino C, Imarisio I, Ganini C, Sacchi L, Quaglini S, Giunta V, De Amici M (2013) Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology 84(2):115–122. https://doi.org/10.1159/000342099

    Article  CAS  PubMed  Google Scholar 

  41. Friedlander M (2009) Combination angiostatic therapies: targeting multiple angiogenic pathways. Retina 29(6 Suppl):S27-29. https://doi.org/10.1097/IAE.0b013e3181ad2673

    Article  PubMed  Google Scholar 

  42. Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2(10):2545–2550

    Article  CAS  Google Scholar 

  43. Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100(9):5170–5174

    Article  CAS  Google Scholar 

  44. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012. https://doi.org/10.1038/nmeth.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Golden RJ, Chen B, Li T, Braun J, Manjunath H, Chen X, Wu J, Schmid V, Chang TC, Kopp F, Ramirez-Martinez A, Tagliabracci VS, Chen ZJ, Xie Y, Mendell JT (2017) An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542(7640):197–202. https://doi.org/10.1038/nature21025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The CMG2-Fc and TEM8-Fc fusion proteins were a kind gift of Planet Biotechnology. The SR-8F7/C7 anti-CMG2 antibody and associated data were a kind gift of Gisou van der Goot and Laurence Abrami. The L2 anti-TEM8 antibody was a kind gift of Brad St. Croix. Funding was provided by the NEI (R01EY018829), NINDS (R21NS059411), and DOD CDMRP (W81XWH-08-1-0710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Rogers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lorna M. Cryanb and Tsz-Ming Tsanga are contributed equally to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cryan, L.M., Tsang, TM., Stiles, J. et al. Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis. Angiogenesis 25, 397–410 (2022). https://doi.org/10.1007/s10456-022-09833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-022-09833-w

Keywords

Navigation