Skip to main content

Advertisement

Log in

Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on ανβ3 integrin expression

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανβ3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανβ3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανβ3 or the peptide PTN112−136 that binds ανβ3 and inhibits PTN binding. In cells that do not express ανβ3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανβ3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kilpelainen I, Kaksonen M, Kinnunen T, Avikainen H, Fath M, Linhardt RJ, Raulo E, Rauvala H (2000) Heparin-binding growth-associated molecule contains two heparin-binding beta -sheet domains that are homologous to the thrombospondin type I repeat. J Biol Chem 275:13564–13570. https://doi.org/10.1074/jbc.275.18.13564

    Article  CAS  PubMed  Google Scholar 

  2. Ryan E, Shen D, Wang X (2016) Structural studies reveal an important role for the pleiotrophin C-terminus in mediating interactions with chondroitin sulfate. FEBS J 283:1488–1503. https://doi.org/10.1111/febs.13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papadimitriou E, Pantazaka E, Castana P, Tsalios T, Polyzos A, Beis D (2016) Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer. Biochim Biophys Acta 1866:252–265. https://doi.org/10.1016/j.bbcan.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  4. Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E (2009) Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta. FASEB J 23:1459–1469. https://doi.org/10.1096/fj.08-117564

    Article  CAS  PubMed  Google Scholar 

  5. Mikelis C, Lamprou M, Koutsioumpa M, Koutsioubas AG, Spyranti Z, Zompra AA, Spiliopoulos N, Vradis AA, Katsoris P, Spyroulias GA, Cordopatis P, Courty J, Papadimitriou E (2011) A peptide corresponding to the C-terminal region of pleiotrophin inhibits angiogenesis in vivo and in vitro. J Cell Biochem 112:1532–1543. https://doi.org/10.1002/jcb.23066

    Article  CAS  PubMed  Google Scholar 

  6. Koutsioumpa M, Poimenidi E, Pantazaka E, Theodoropoulou C, Skoura A, Megalooikonomou V, Kieffer N, Courty J, Mizumoto S, Sugahara K, Papadimitriou E (2015) Receptor protein tyrosine phosphatase beta/zeta is a functional binding partner for vascular endothelial growth factor. Mol Cancer 14:19. https://doi.org/10.1186/s12943-015-0287-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poimenidi E, Theodoropoulou C, Koutsioumpa M, Skondra L, Droggiti E, van den Broek M, Koolwijk P, Papadimitriou E (2016) Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner. Vasc Pharmacol 80:11–19. https://doi.org/10.1016/j.vph.2016.02.008

    Article  CAS  Google Scholar 

  8. Héroult M, Bernard-Pierrot I, Delbé J, Hamma-Kourbali Y, Katsoris P, Barritault D, Papadimitriou E, Plouet J, Courty J (2004) Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 23:1745–1753. https://doi.org/10.1038/sj.onc.1206879

    Article  CAS  PubMed  Google Scholar 

  9. Bowler E, Oltean S (2019) Alternative splicing in angiogenesis. Int J Mol Sci 20:2067. https://doi.org/10.3390/ijms20092067

    Article  CAS  PubMed Central  Google Scholar 

  10. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625. https://doi.org/10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  11. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J (2018) Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 19:1264. https://doi.org/10.3390/ijms19041264

    Article  CAS  PubMed Central  Google Scholar 

  12. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling in control of vascular function. Nat Rev Mol Cell Biol 7:359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  13. Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580. https://doi.org/10.1161/CIRCRESAHA.107.155655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. West XZ, Meller N, Malinin NL, Deshmukh L, Meller J, Mahabeleshwar GH, Weber ME, Kerr BA, Vinogradova O, Byzova TV (2012) Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS ONE 7:e31071. https://doi.org/10.1371/journal.pone.0031071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koutsioumpa M, Polytarchou C, Courty J, Zhang Y, Kieffer N, Mikelis C, Skandalis SS, Hellman U, Iliopoulos D, Papadimitriou E (2013) Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration. J Biol Chem 288:343–354. https://doi.org/10.1074/jbc.M112.387076

    Article  CAS  PubMed  Google Scholar 

  16. Brozzo MS, Bjelić S, Kisko K, Schleier T, Leppänen VM, Alitalo K, Winkler FK, Ballmer-Hofer K (2012) Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 119:1781–1788. https://doi.org/10.1182/blood-2011-11-390922

    Article  CAS  PubMed  Google Scholar 

  17. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  18. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer S, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San Francisco. https://doi.org/10.13140/RG.2.2.17892.37766

    Book  Google Scholar 

  19. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N, Ferrara N (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 276:3222–3230. https://doi.org/10.1074/jbc.M002016200

    Article  CAS  PubMed  Google Scholar 

  21. Clegg LW, Mac Gabhann F (2015) Site-specific phosphorylation of VEGFR2 is mediated by receptor trafficking: insights from a computational model. PLoS Comput Biol 11:e1004158. https://doi.org/10.1371/journal.pcbi.1004158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185. https://doi.org/10.1007/s10456-009-9141-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parthymou A, Lampropoulou E, Mikelis C, Drosou G, Papadimitriou E (2008) Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells. Eur J Cell Biol 87:17–29. https://doi.org/10.1016/j.ejcb.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  24. Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54. https://doi.org/10.1007/978-1-60761-670-2_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jäger R, List B, Knabbe C, Souttou B, Raulais D, Zeiler T, Wellstein A, Aigner A, Neubauer A, Zugmaier G (2002) Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients. Br J Cancer 86:858–863. https://doi.org/10.1038/sj.bjc.6600202

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamma-Kourbali Y, Bernard-Pierrot I, Heroult M, Dalle S, Caruelle D, Milhiet PE, Fernig DG, Delbé J, Courty J (2008) Inhibition of the mitogenic, angiogenic and tumorigenic activities of pleiotrophin by a synthetic peptide corresponding to its C-thrombospondin repeat-I domain. J Cell Physiol 214:250–259. https://doi.org/10.1002/jcp.21191

    Article  CAS  PubMed  Google Scholar 

  27. Diamantopoulou Z, Bermek O, Polykratis A, Hamma-Kourbali Y, Delbé J, Courty J, Katsoris P (2010) A Pleiotrophin C-terminus peptide induces anti-cancer effects through RPTPβ/ζ. Mol Cancer 9:224. https://doi.org/10.1186/1476-4598-9-224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elahouel R, Blanc C, Carpentier G, Frechault S, Cascone I, Destouches D, Delbé J, Courty J, Hamma-Kourbali Y (2015) Pleiotrophin exerts its migration and invasion effect through the neuropilin-1 pathway. Neoplasia 17:613–624. https://doi.org/10.1016/j.neo.2015.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernard-Pierrot I, Delbe J, Caruelle D, Barritault D, Courty J, Milhiet PE (2001) The lysine-rich C-terminal tail of heparin affin regulatory peptide is required for mitogenic and tumor formation activities. J Biol Chem 276:12228–12234. https://doi.org/10.1074/jbc.M010913200

    Article  CAS  PubMed  Google Scholar 

  30. Zhang N, Zhong R, Perez-Pinera P, Herradon G, Ezquerra L, Wang ZY, Deuel TF (2006) Identification of the angiogenesis signaling domain in pleiotrophin defines a mechanism of the angiogenic switch. Biochem Biophys Res Commun 343:653–658. https://doi.org/10.1016/j.bbrc.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  31. Polykratis A, Katsoris P, Courty J, Papadimitriou E (2005) Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J Biol Chem 280:22454–22461. https://doi.org/10.1074/jbc.M414407200

    Article  CAS  PubMed  Google Scholar 

  32. Atkinson SJ, Ellison TS, Steri V, Gould E, Robinson SD (2014) Redefining the role(s) of endothelial αvβ3-integrin in angiogenesis. Biochem Soc Trans 42:1590–1595. https://doi.org/10.1042/BST20140206

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds AR, Reynolds LE, Nagel TE, Lively JC, Robinson SD, Hicklin DJ, Bodary SC, Hodivala-Dilke KM (2004) Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res 64:8643–8650. https://doi.org/10.1158/0008-5472.CAN-04-2760

    Article  CAS  PubMed  Google Scholar 

  34. Robinson SD, Reynolds LE, Kostourou V, Reynolds AR, da Silva RG, Tavora B, Baker M, Marshall JF, Hodivala-Dilke KM (2009) Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J Biol Chem 284:33966–33981. https://doi.org/10.1074/jbc.M109.030700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860. https://doi.org/10.1016/S1097-2765(05)00076-6

    Article  CAS  PubMed  Google Scholar 

  36. Budd S, Byfield G, Martiniuk D, Geisen P, Hartnett ME (2009) Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp Eye Res 89:718–727. https://doi.org/10.1016/j.exer.2009.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buharalioglu CK, Song CY, Yaghini FA, Ghafoor HU, Motiwala M, Adris T, Estes AM, Malik KU (2011) Angiotensin II-induced process of angiogenesis is mediated by spleen tyrosine kinase via VEGF receptor-1 phosphorylation. Am J Physiol Heart Circ Physiol 301:H1043–H1055. https://doi.org/10.1152/ajpheart.01018.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sartori A, Corno C, De Cesare M, Scanziani E, Minoli L, Battistini L, Zanardi F, Perego P (2019) Efficacy of a selective binder of α(V)β(3) integrin linked to the tyrosine kinase inhibitor sunitinib in ovarian carcinoma preclinical models. Cancers (Basel) 11:531. https://doi.org/10.3390/cancers11040531

    Article  CAS  Google Scholar 

  39. Lee WS, Pyun BJ, Kim SW, Shim SR, Nam JR, Yoo JY, Jin Y, Jin J, Kwon YG, Yun CO, Nam DH, Oh K, Lee DS, Lee SH, Yoo JS (2015) TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis. MAbs 7:957–968. https://doi.org/10.1080/19420862.2015.1045168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding G, Chen X, Zhu J, Feng Z (2014) A murine-human chimeric IgG antibody against vascular endothelial growth factor receptor 2 inhibits angiogenesis in vitro. Cytotechnology 66:395–411. https://doi.org/10.1007/s10616-013-9587-x

    Article  CAS  PubMed  Google Scholar 

  41. Xuan ZX, Li LN, Zhang Q, Xu CW, Yang DX, Yuan Y, An YH, Wang SS, Li XW, Yuan SJ (2014) Fully human VEGFR2 monoclonal antibody BC001 attenuates tumor angiogenesis and inhibits tumor growth. Int J Oncol 45:2411–2420. https://doi.org/10.3892/ijo.2014.2690

    Article  CAS  PubMed  Google Scholar 

  42. Simmons AB, Bretz CA, Wang H, Kunz E, Hajj K, Jennedy C, Yang Z, Suwanmanee T, Kafri T, Hartnett ME (2018) Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy. Angiogenesis 21:751–764. https://doi.org/10.1007/s10456-018-9618-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wragg JW, Heath VL, Bicknell R (2017) Sunitinib treatment enhances metastasis of innately drug-resistant breast tumors. Cancer Res 77:1008–1020. https://doi.org/10.1158/0008-5472.CAN-16-1982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been co-financed by the Operational Program “Human Resources Development, Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national funds, by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (ALTangioTARGET, Grant Agreement No. 626057), Andreas Mentzelopoulos family grants scholarship for postgraduate studies at the University of Patras (to PK) and the State Scholarship Foundation in Greece (IKY) (Operational Program “Human Resources Development—Education and Lifelong Learning”, Partnership Agreement (PA) 2014–2020, scholarship to EC). We thank the Advanced Light Microscopy facility of the School of Health Sciences, University of Patras, for using the Leica SP5 confocal microscope. Synthesis of PTN16−24 and PTN112−136 was performed under the supervision of our beloved Prof. Paul Cordopatis, who is deceased.

Author information

Authors and Affiliations

Authors

Contributions

ML, PK, FK, ΗT, SB, MSS, MK, EP, DT and AAZ performed experiments, acquired data and tools and analyzed data; ML, TT and CMM analyzed data and critically reviewed the manuscript; EP designed the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Evangelia Papadimitriou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving HUVEC were in accordance with the ethical standards of the institutional research committee (Bioethics Committee of the University of Patras) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamprou, M., Kastana, P., Kofina, F. et al. Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on ανβ3 integrin expression. Angiogenesis 23, 621–636 (2020). https://doi.org/10.1007/s10456-020-09733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09733-x

Keywords

Navigation